This article outlines issues to be tackled when considering increases in biofuel usage in the European Union (EU) and examines a potential scheme to increase the use of biofuels in the road transport sector; the development of biofuels corridors. An EU biofuels corridor is defined as a long-distance and cross-border route on the Trans-European Transport (TEN-T) Network roads on which blends with a high biofuel content (referred to as high blends) are offered at regular intervals along the entire route. The article first defines the current framework of EU biofuels development. A case study on the feasibility of one possible EU biofuels corridor, from Rotterdam, Netherlands, to Constanta, Romania, is analyzed along four potential biofuels corridor designs (under different future scenarios). The case study includes interviews with key stakeholders, transport flows analysis, refueling infrastructure, and biofuels policy in the relevant member states. The results are extrapolated to the complete EU level in order to assess the potential effect of the biofuels corridor approach as a measure of stimulating the use of biofuels. It is concluded that EU biofuels corridors can increase the use of biofuels. However, if applied as a stand-alone measure a maximum contribution is limited. The effectiveness of biofuels corridors is not larger mainly due to the fact that the transport flows on the TEN-T Network roads are not representative of actual fuel sales at stations on this network (i.e., motorway stations). In addition, various recommendations are made for further research. © 2012 American Society of Civil Engineers.
LINK
A process for the prepn. of arom. compds. from a feed stream contg. biomass or mixts. of biomass, the process comprising: a) subjecting a feed stream contg. biomass or mixts. of biomass to a process to afford a conversion product comprising arom. compds.; b) recovering the arom. compds. from said conversion product; c) sepg. a higher mol. wt. fraction comprising polyarom. hydrocarbons (PAH) from a lower mol. wt. fraction comprising benzene, toluene and xylene (BTX) by distn.; d) reducing at least part of said higher mol. wt. fraction to obtain a reduced fraction comprising polycyclic aliphatics (PCA); and e) subjecting the higher mol. wt. fraction obtained in step c), the reduced fraction obtained in step d), or a mixt. thereof, to a process to obtain lower mol. wt. aroms. (BTX). [on SciFinder(R)]
DOCUMENT
This article addresses European energy policy through conventional and transformative sustainability approaches. The reader is guided towards an understanding of different renewable energy options that are available on the policy making table and how the policy choices have been shaped. In arguing that so far, European energy policy has been guided by conventional sustainability framework that focuses on eco-efficiency and ‘energy mix’, this article proposes greater reliance on circular economy (CE) and Cradle to Cradle (C2C) frameworks. Exploring the current European reliance on biofuels as a source of renewable energy, this article will provide recommendations for transition to transformative energy choices. http://dx.doi.org/10.13135/2384-8677/2331 https://www.linkedin.com/in/helenkopnina/
MULTIFILE
Pyrolysis liquids from lignocellulosic biomass have the potential to be used as a feed for aromatics such as benzene, toluene, and xylenes (BTX) using catalytic upgrading with zeolites. We here report an experimental study on the conversion of various pyrolysis oil fractions to determine the most suitable one for BTX synthesis. For this purpose, the pyrolysis liquid was fractionated using several extraction/distillation steps to give four fractions with different chemical compositions. The fractions were analyzed in detail using nuclear magnetic resonance spectroscopy, elemental analysis, gas chromatography-mass spectroscopy, thermogravimetric analysis, Karl-Fischer titration, and gel permeation chromatography. Catalytic pyrolysis experiments were carried out using a tandem microreactor with H-ZSM-5 (23) as the catalyst. The highest BTX yield of 24% (on a carbon and dry basis) was obtained using the fractions enriched in phenolics, whereas all others gave far lower yields (4.4-9%, on a carbon and dry basis). Correlations were established between the chemical composition of the feed fraction and the BTX yield. These findings support the concept of a pyrolysis biorefinery, where the pyrolysis liquid is separated into well-defined fractions before further dedicated catalytic conversions to biobased chemicals and biofuels using tailored catalysts.
DOCUMENT
While tourism and air transport are recovering from the impacts of the Covid pandemic, it seems timely to draw a synthetic view of future stakes combining the following topics: the greenhouse gas emissions scenarios for tourism, regarding which recent work has improved their understanding; the climatic impact of aviation, almost 60% of which is due to non-CO 2 emissions; alternative fuels (biofuels, E-fuels, hydrogen) and engine designs (fuel cells...) which are complex and controversial issues, and whose potentials should be assessed regarding their timing, environmental impacts, and their ability to meet long distance travel requirements. This paper analyses the extent to which the new options regarding fuels and engines can help decarbonize tourism and air transport. The answer is that they can partly contribute but do not render obsolete previous work on substitutions between types of tourism (short versus long distance...), between transport modes (ground transport versus air), length of stay, etc. Following this step, the paper deals with the position of aviation players and the type of arguments they use. We conclude on the necessity to make strategic choices among the options to avoid wasting investments.
MULTIFILE
The present invention relates to a novel process for the preparation of low molecular weight aromatic compounds such as benzene, toluene, and xylenes (BTX) from plastics. Provided is a thermo-catalytic pyrolysis process for the preparation of aromatic compounds from a feed stream comprising plastic, comprising the steps of: a) subjecting a feed stream comprising a plastic to a pyrolysis treatment at a pyrolysis temperature in the range of 600-1000°C to produce pyrolysis vapors; b) optionally cooling the pyrolysis vapors to a temperature that is below the pyrolysis temperature; c) contacting the vaporous phase with an aromatization catalyst at an aromatization temperature in the range of 450 - 700 °C, which aromatization temperature is at least 50°C lower than the pyrolysis temperature, in a catalytic conversion step to yield a conversion product comprising aromatic compounds; and d) optionally recovering the aromatic compounds from the conversion product.
LINK