Biogas is produced from biomass by means of digestion. Treated to so-called ‘green gas’, it can replace natural gas. Alternatively, biogas can be used to produce electrical power and heat in a combined heat power (CHP) installation. In 2014 global biogas production was only 1% of natural gas production. In the future, biogas is expected to play a role in specific applications, e.g. to provide flexibility in electricity supply
LINK
A model to describe biogas transport costs in a regional grid is presented. In the model biogas is collected to a central location by transport through dedicated pipelines. Costs have been calculated for two different lay-outs of the grid i.e. star and fishbone lay-out. The costs depend on the covered area and the size of the digesters. Model results show that in a star layout transport costs for small scale digesters are much higher than costs for large scale digesters and costs in a fishbone lay-out are lower than costs in a star lay-out.
DOCUMENT
The production of biogas through anaerobic digestion is one of the technological solutions to convert biomass into a readily usable fuel. Biogas can replace natural gas, if the biogas is upgraded to green gas. To contribute to the EU-target to reduce Green House Gases emissions, the installed biogas production capacity and the amount of farm-based biomass, as a feedstock, has to be increased. A model was developed to describe a green gas production chain that consists of several digesters connected by a biogas grid to anupgrading and injection facility. The model calculates costs and energy use for 1 m3 of green gas. The number of digesters in the chain can be varied to find results for different configurations. Results are presented for a chain with decentralized production of biogas, i.e. a configuration with several digesters, and a centralized green gas production chain using a single digester. The model showed that no energy advantage per produced m3 green gas can be created using a biogas grid and decentralized digesters instead of one large-scale digester. Production costs using a centralized digester are lower, in the range of5 Vct to 13 Vct per m3, than in a configuration of decentralized digesters. The model calculations also showed the financial benefit for an operator of a small-scale digester wishing to produce green gas in the cooperation with nearby other producers. E.g. subsidies and legislation based on environmental arguments could encourage the use of decentralized digesters in a biogas grid.
DOCUMENT
At gas stations, tetrahydrothiophene (THT) is added to odorless biogas (and natural gas) for quick leak detection through its distinctive smell. However, for low bio and natural gas velocities, evaporation is not complete and the odorization process is compromised, causing odor fluctuations and undesired liquid accumulation on the pipeline. Inefficient odorization not only endangers the safety and well-being of gas users, but also increases gas distribution companies OPEX. To enhance THT evaporation during low bio and natural gas flow, an alternative approach involves improve the currently used atomization process. Electrohydrodynamic Atomization (EHDA), also known as Electrospray (ES), is a technology that uses strong electric fields to create nano and micro droplets with a narrow size distribution. This relatively new atomization technology can improve the odorization process as it can manipulate droplet sizes according to the natural and bio gas flow. BiomEHD aims to develop, manufacture, and test an EHDA odorization system for applying THT in biogas odorization.