Purpose: Exercise therapy with a focus on muscle strengthening has proven to be effective for the management of knee osteoarthritis (OA). Yet it is not known whether high-intensity resistance training (RT) is more effective in improving upper leg muscle strength and physical performance than low-intensity RT. Still, there is some controversy regarding the effectiveness of high-intensity RT and whether or not it is harmful, for instance by accelerating cartilage degeneration, osteophyte formation, or increasing synovitis. Any catabolic or anabolic response of musculoskeletal tissue to RT might first be visible on a biochemical level before changes in clinical symptoms are measurable. Serum biomarkers can objectively measure early biochemical changes and assess whether RT leads to a more anabolic or catabolic response. The aim of this study is to assess (i) whether high-intensity RT elicits a different response (e.g. catabolic) on systemic inflammation and musculoskeletal tissues in and surrounding the joint, including bone, cartilage, muscle, and synovial tissue compared to low-intensity RT; and (ii) whether there is an association between changes in serum levels of inflammatory and musculoskeletal tissue-derived biomarkers and improvements in clinical outcomes (performance-based tests and self-reported outcomes on pain and activity limitations).Methods: In a randomized controlled trial, 177 participants with knee OA conducted a high-intensity (70%-80% of the Repetition Maximum (1RM)) or low-intensity (40%-50% 1RM) RT program 3 times a week for 12 weeks. Measures of clinical outcomes and serum samples were collected at the start of RT (pre-intervention), after 3 months at the end of RT (post-intervention), and 6 months after RT (follow-up). As a reflection of systemic inflammation (CRP), synovitis (CRPM, C3M), bone turnover (OC, CTX-I), cartilage turnover (PRO-C2, C2M, huARGS), muscle turnover (PRO-C3, PRO-C6), and cell behaviour (col10neo) a total of eleven serum biomarkers were analysed. With the exception of CRP, which was determined with an immunoturbidimetric assay, ELISA assays were used to quantify serum levels of the other 10 serum biomarkers. The primary outcome measures are the changes in serum biomarker levels. Other outcome measures include upper leg muscle strength, performance-based tests, and self-reported outcomes on pain and activity limitations.Results: High-intensity RT resulted in greater improvements in muscle strength compared to low-intensity RT when measured by the estimated 1RM. No significant differences between groups were found for upper leg muscle strength (Nm/kg) when measured with an isokinetic dynamometer. Both groups showed similar improvements in pain and physical functioning. Although there is no difference between groups in clinical outcomes, except for the estimated 1RM, we expect that participants in the high-intensity RT group are more likely to have enhanced serum levels of catabolic biomarkers than participants in the low-intensity RT group. Since both the high-intensity RT group and low-intensity RT group improved over time, we expect that changes in serum biomarker levels are associated with overall improvements in clinical outcomes. Almost all participants had normal CRP values (<10 mg/L) at baseline. No significant differences between the intensity RT groups in CRP levels at baseline, at 3 months, and 6 months were found. In both groups, there was no evidence that RT influenced CRP serum levels.Conclusions: The work to date on CRP serum levels suggests that RT did not influence CRP levels. This result may be explained by the high percentage of participants with normal CRP levels (<10 mg/L). We are currently in the process of analyzing the remaining 10 neo-epitope biomarkers. We expect that our remaining 10 assays have the potential to measure changes in serum biomarker levels in response to RT. This will be the first study to investigate the effects of high-intensity versus low-intensity RT on musculoskeletal tissue turnover in individuals with knee OA. With this, we aim to determine whether high-intensity RT can improve upper leg muscle strength and physical performance without worsening systemic inflammation or causing adverse effects on musculoskeletal knee OA-related tissues.
Background:In hospitalized patients with COVID-19, the dosing and timing of corticosteroids vary widely. Low-dose dexamethasone therapy reduces mortality in patients requiring respiratory support, but it remains unclear how to treat patients when this therapy fails. In critically ill patients, high-dose corticosteroids are often administered as salvage late in the disease course, whereas earlier administration may be more beneficial in preventing disease progression. Previous research has revealed that increased levels of various biomarkers are associated with mortality, and whole blood transcriptome sequencing has the ability to identify host factors predisposing to critical illness in patients with COVID-19.Objective:Our goal is to determine the most optimal dosing and timing of corticosteroid therapy and to provide a basis for personalized corticosteroid treatment regimens to reduce morbidity and mortality in hospitalized patients with COVID-19.Methods:This is a retrospective, observational, multicenter study that includes adult patients who were hospitalized due to COVID-19 in the Netherlands. We will use the differences in therapeutic strategies between hospitals (per protocol high-dose corticosteroids or not) over time to determine whether high-dose corticosteroids have an effect on the following outcome measures: mechanical ventilation or high-flow nasal cannula therapy, in-hospital mortality, and 28-day survival. We will also explore biomarker profiles in serum and bronchoalveolar lavage fluid and use whole blood transcriptome analysis to determine factors that influence the relationship between high-dose corticosteroids and outcome. Existing databases that contain routinely collected electronic data during ward and intensive care admissions, as well as existing biobanks, will be used. We will apply longitudinal modeling appropriate for each data structure to answer the research questions at hand.Results:As of April 2023, data have been collected for a total of 1500 patients, with data collection anticipated to be completed by December 2023. We expect the first results to be available in early 2024.Conclusions:This study protocol presents a strategy to investigate the effect of high-dose corticosteroids throughout the entire clinical course of hospitalized patients with COVID-19, from hospital admission to the ward or intensive care unit until hospital discharge. Moreover, our exploration of biomarker and gene expression profiles for targeted corticosteroid therapy represents a first step towards personalized COVID-19 corticosteroid treatment.Trial Registration:ClinicalTrials.gov NCT05403359; https://clinicaltrials.gov/ct2/show/NCT05403359International Registered Report Identifier (IRRID):DERR1-10.2196/48183
MULTIFILE
ObjectivesTo investigate cartilage tissue turnover in response to a supervised 12-week exercise-related joint loading training program followed by a 6-month period of unsupervised training in patients with knee osteoarthritis (OA). To study the difference in cartilage tissue turnover between high- and low-resistance training.MethodPatients with knee OA were randomized into either high-intensity or low-intensity resistance supervised training (two sessions per week) for 3 months and unsupervised training for 6 months. Blood samples were collected before and after the supervised training period and after the follow-up period. Biomarkers huARGS, C2M, and PRO-C2, quantifying cartilage tissue turnover, were measured by ELISA. Changes in biomarker levels over time within and between groups were analyzed using linear mixed models with baseline values as covariates.ResultshuARGS and C2M levels increased after training and at follow-up in both low- and high-intensity exercise groups. No changes were found in PRO-C2. The huARGS level in the high-intensity resistance training group increased significantly compared to the low-intensity resistance training group after resistance training (p = 0.029) and at follow-up (p = 0.003).ConclusionCartilage tissue turnover and cartilage degradation appear to increase in response to a 3-month exercise-related joint loading training program and at 6-month follow-up, with no evident difference in type II collagen formation. Aggrecan remodeling increased more with high-intensity resistance training than with low-intensity exercise.These exploratory biomarker results, indicating more cartilage degeneration in the high-intensity group, in combination with no clinical outcome differences of the VIDEX study, may argue against high-intensity training.
Achtergrond: Chronische pijn is een veelvoorkomend probleem. Hulpverleners hebben behoefte aan handvatten om de hulp aan mensen met chronische pjjn te verbeteren. Huidige behandelingen sorteren beperkt effect en de waardering van mensen over de ontvangen zorg is matig. Het faciliteren van betrokkenheid en eigen regie zijn voorwaardelijk voor effectieve hulp. EHealth toepassingen inclusief het monitoren van objectieve biomarkers voor pijn kunnen hierbij behulpzaam zijn. Een bestaande EHealth toepassing gericht op het informeren van mensen met een chronische aandoening en het faciliteren van zelfmanagement is beschikbaar. Doelstelling: 1)Het doorontwikkelen van een bestaande EHealth toepassing specifiek voor mensen met chronische pijn en het evalueren van biomarkers. 2)De ontwikkelde EHealth toepassing inclusief biomarkeranalyse te implementeren bij een beperkte groep van mensen met chronische musculoskeletale pijn om eerste effecten te evalueren en gebruikerservaringen te inventariseren en 3)op basis van de verkregen resultaten een vervolg onderzoeksaanvraag te schrijven om de effecten van deze nieuwe behandelwijze te onderzoeken en nieuwe biomarker-testen te ontwikkelen. Vraagstellingen: 1)Hoe ziet de doorontwikkeling (op basis van co-creatie) van de EHealth toepassing er concreet uit? 2)Is de biomarker α-amylase een objectieve maat voor pijnintensiteit? 3)Wat zijn de eerste effecten van deze EHealth applicatie? (uitkomstmaten zijn pijn, α-amylase concentratie, dagelijks functioneren en kwaliteit van leven) 4)Wat zijn de ervaringen van gebruikers (patiënten en hulpverleners)? Aanpak: Het onderzoek wordt uitgevoerd door een consortium van deskundigen op het gebied van niet-farmaceutische behandeling van mensen met chronische pijn en zelfmanagement, de ontwikkeling en het gebruik van biomarkers voor chronische pijn, een EHealth ontwikkelaar en behandelaren van mensen met chronische pijn en patiënten. Een EHealth toepassing wordt ontwikkeld, biomarkers waaronder α-amylase worden geëvalueerd en de eerste effecten en gebruikerservaringen van deze interventie inclusief biomarkerbepaling worden gemonitord in een populatie van mensen met chronische lage rug en/of nekpijn.
Hogeschool Leiden en Naturalis zetten in op een gezamenlijk lectoraat met het thema Metagenomics, een methode waarbij het DNA/RNA wordt gebruikt om te bepalen welke (micro-) organismen aanwezig zijn in een biologisch systeem. Metagenomics kent vele toepassingen en is daarmee een belangrijke lifescience sleuteltechnologie. Voor het lectoraat zullen de ontwikkeling van (nieuwe) methoden voor bemonstering, monstervoorbereiding en DNA sequencing centraal staan. De relatie tussen biodiversiteit en gezondheid (van mens, dier, plant) zal een belangrijk inhoudelijk thema zijn, dit sluit aan op de innovatieopgaven/missies: landbouw, water en voedsel en gezondheid en zorg. Het lectoraat wordt onderdeel van het Leiden Centre for Applied Bioscience (LCAB)1. Metagenomics speelt een belangrijke rol in verschillende reeds lopende projecten en sluit prima aan bij de overige -omics technologieën die worden toegepast bij het praktijkgericht onderzoek van het LCAB. Het beoogde lectoraat heeft een belangrijke brugfunctie naar de andere lectoraten binnen het LCAB en de vakgroep Bioinformatica. Het versterken van de impact van het onderzoek op het onderwijs een belangrijke doelstelling. Voor Naturalis is de ontwikkeling en toepassing van nieuwe inventarisatie- en onderzoeksmethoden gericht op soortherkenning een belangrijk speerpunt. Dit omvat moleculaire technieken, waaronder genetische identificatie en eDNA-metabarcoding, maar ook geautomatiseerde beeld- en geluidsherkenning (door toepassing van kunstmatige intelligentie). Via het metagenomics lectoraat zullen praktijktoepassingen voor deze methoden ontwikkeld worden. Er is grote belangstelling voor de toepassing van Metagenomics bij een scala aan bedrijven en publieke instellingen. Het lectoraat zal uitgaan van bestaande netwerken van beide instituten en deze verder uitbreiden. Belangrijke bestaande kennispartners zijn het biotechnologiebedrijf BaseClear, Universiteit Leiden en het Leids Universitair Medisch Centrum. De infrastructuur van het LCAB en de onderzoekslaboratoria van Naturalis bieden goede mogelijkheden voor facility sharing voor zowel het onderzoek als voor het onderwijs. De ligging van deze organisaties in elkaars directe nabijheid is daarbij een positieve factor.
Sensoren gebaseerd op nanotechnologie worden beschouwd als een technologie die sterk kan bijdragen aan de kwaliteit van de gezondheidszorg en aan het verminderen van de zorgkosten. Door hun extreme gevoeligheid zijn dit type sensoren in staat om met kleine monstervolumes in korte tijd een nauwkeurige diagnose te kunnen stellen op basis van bijvoorbeeld bloed-, speeksel-, adem- of urinemonsters. Concreet betekent dit dat met dit type sensoren eenvoudige analyses mogelijk zijn, waardoor er extra mogelijkheden naast bestaande, vaak uitgebreide, analyselaboratoria ontstaan. Hoewel er een divers aantal sensorprincipes beschikbaar is, zijn er tot op heden nog nauwelijks praktische toepassingen gerealiseerd. De reden is dat er nog een aantal technische stappen te zetten zijn om van een laboratorium-prototype sensor tot een compleet analyse-apparaat te komen. Binnen het huidige project willen de consortiumpartners deze ontwikkeling uitvoeren voor een optische nanosensor, waarbij wordt voortgebouwd op de kennis en ervaring die binnen het lectoraat NanoPhysics Interface is opgedaan in de afgelopen twee jaren. Specifiek zal worden gekeken naar twee belangrijke aspecten: het aanbrengen van de gevoelige laag en de elektronische interface. Belangrijke aspecten hierbij zijn dat de gevoelige laag (die een interactie heeft met de op te sporen stoffen) lokaal op de juiste plek op de sensor wordt aangebracht en een goede hechting vertoont. Voor sommige toepassingen kan het tevens nodig zijn dat er verschillende gevoelige lagen op een chip (met meerdere sensoren) gecombineerd kunnen worden. Voor de uitlees-elektronica zal met name gekeken worden naar de optische aansluiting op de chip (die eenvoudig te vervangen moet zijn), naar mogelijkheden tot miniaturisatie (om de meting zo flexibel mogelijk te kunnen inzetten) en naar de eisen aan de gebruikersinterface (afhankelijk van de toepassing en de doelgroep). Uiteindelijk is het de bedoeling dat het geheel samengevoegd wordt in een demonstrator-opstelling. Vanwege de huidige kennis binnen het lectoraat op het gebied van metingen aan het menselijk metabolisme via biomarkers op de huid, is ervoor gekozen om deze toepassing voor de demonstrator te gebruiken.