Saliva diagnostics have become increasingly popular due to their non-invasive nature and patient-friendly collection process. Various collection methods are available, yet these are not always well standardized for either quantitative or qualitative analysis. In line, the objective of this study was to evaluate if measured levels of various biomarkers in the saliva of healthy individuals were affected by three distinct saliva collection methods: 1) unstimulated saliva, 2) chew stimulated saliva, and 3) oral rinse. Saliva samples from 30 healthy individuals were obtained by the three collection methods. Then, the levels of various salivary biomarkers such as proteins and ions were determined. It was found that levels of various biomarkers obtained from unstimulated saliva were comparable to those in chew stimulated saliva. The levels of potassium, sodium, and amylase activity differed significantly among the three collection methods. Levels of all biomarkers measured using the oral rinse method significantly differed from those obtained from unstimulated and chew-stimulated saliva. In conclusion, both unstimulated and chew-stimulated saliva provided comparable levels for a diverse group of biomarkers. However, the results obtained from the oral rinse method significantly differed from those of unstimulated and chew-stimulated saliva, due to the diluted nature of the saliva extract.
DOCUMENT
Increased intestinal permeability is linked to both intestinal as well as peripheralinflammatory disease. Contact between intestinal contents and the underlying immune system may account for excessive immune activation and local as well as systemic inflammation. Decreasing intestinal permeability using next-generation food products provides an attractive strategy to improve human health. However, to date, insight in biomarkers which reliably and reproducibly reflect intestinal permeability are lacking. Insight in these biomarkers provides a method to easily assess the effectivity of new healthimproving food products.
DOCUMENT
Introduction: Strenuous physical stress induces a range of physiological responses, the extent depending, among others, on the nature and severity of the exercise, a person’s training level and overall physical resilience. This principle can also be used in an experimental set-up by measuring time-dependent changes in biomarkers for physiological processes. In a previous report, we described the effects of workload delivered on a bicycle ergometer on intestinal functionality. As a follow-up, we here describe an analysis of the kinetics of various other biomarkers. Aim: To analyse the time-dependent changes of 34 markers for different metabolic and immunological processes, comparing four different exercise protocols and a rest protocol. Methods: After determining individual maximum workloads, 15 healthy male participants (20–35 years) started with a rest protocol and subsequently performed (in a cross-over design with 1-week wash-out) four exercise protocols of 1-h duration at different intensities: 70% Wmax in a hydrated and a mildly dehydrated state, 50% Wmax and intermittent 85/55% Wmax in blocks of 2 min. Perceived exertion was monitored using the Borg’ Rating of Perceived Exertion scale. Blood samples were collected both before and during exercise, and at various timepoints up to 24 h afterward. Data was analyzed using a multilevel mixed linear model with multiple test correction. Results: Kinetic changes of various biomarkers were exercise-intensity-dependent. Biomarkers included parameters indicative of metabolic activity (e.g., creatinine, bicarbonate), immunological and hematological functionality (e.g., leukocytes, hemoglobin) and intestinal physiology (citrulline, intestinal fatty acid-binding protein, and zonulin). In general, responses to high intensity exercise of 70% Wmax and intermittent exercise i.e., 55/85% Wmax were more pronounced compared to exercise at 50% Wmax. Conclusion: High (70 and 55/85% Wmax) and moderate (50% Wmax) intensity exercise in a bicycle ergometer test produce different time-dependent changes in a broad range of parameters indicative of metabolic activity, immunological and hematological functionality and intestinal physiology. These parameters may be considered biomarkers of homeostatic resilience. Mild dehydration intensifies these time-related changes. Moderate intensity exercise of 50% Wmax shows sufficient physiological and immunological responses and can be employed to test the health condition of less fit individuals.
DOCUMENT
Systemic sclerosis (SSc) is an autoimmune disease which is characterized by vasculopathy, tissue fibrosis and activation of the innate and adaptive immune system. Clinical features of the disease consists of skin thickening and internal organ involvement. Due to the heterogeneous nature of the disease it is difficult to predict disease progression and complications. Despite the discovery of novel autoantibodies associated with SSc, there is an unmet need for biomarkers for diagnosis, disease progression and response to treatment. To date, the use of single (surrogate) biomarkers for these purposes has been unsuccessful. Combining multiple biomarkers in to predictive panels or ultimately algorithms could be more precise. Given the limited therapeutic options and poor prognosis of many SSc patients, a better understanding of the immune-pathofysiological profiles might aid to an adjusted therapeutic approach. Therefore, we set out to explore immunological fingerprints in various clinically defined forms of SSc. We used multilayer profiling to identify unique immune profiles underlying distinct autoantibody signatures. These immune profiles could fill the unmet need for prognosis and response to therapy in SSc. Here, we present 3 pathophysiological fingerprints in SSc based on the expression of circulating antibodies, vascular markers and immunomodulatory mediators.
DOCUMENT
Background and aims: Observational data indicate that diets rich in fruits and vegetables have a positive effect on inflammatory status, improve metabolic resilience and may protect against the development of non-communicable diseases. Nevertheless, experimental evidence demonstrating a causal relationship between nutrient intake (especially whole foods) and changes in metabolic health is scarce. This study investigated the pleiotropic effects of sulforaphane from broccoli sprouts, compared to pea sprouts, on biomarkers of endothelial function, inflammation and metabolic stress in healthy participants subjected to a standardized caloric challenge.Methods: In this double-blind, crossover, randomized, placebo-controlled trial 12 healthy participants were administered 16 g broccoli sprouts, or pea sprouts (placebo) followed by the standardized high-caloric drink PhenFlex given to disturb healthy homeostasis. Levels of inflammatory biomarkers and metabolic parameters were measured in plasma before and 2 h after the caloric overload.Results: Administration of broccoli sprouts promoted an increase in levels of CCL-2 induced by caloric load (p = 0.017). Other biomarkers (sICAM-1, sVCAM-1, hs-CRP, and IL-10) individually showed insignificant tendencies toward increase with administration of sulforaphane. Combining all studied biomarkers into the systemic low-grade inflammation score further confirmed upregulation of the inflammatory activity (p = 0.087) after sulforaphane. No significant effects on biomarkers of metabolic stress were detected.Conclusion: This study has demonstrated that sulforaphane facilitated development of a mild pro-inflammatory state during the caloric challenge, which could be suggestive of the onset of the hormetic response induced by this phytonutrient. The use of integrative outcomes measures such as the systemic low-grade inflammation score can be viewed as a more robust approach to study the subtle and pleiotropic effects of phytonutrients.Clinical trial registration:www.clinicaltrials.gov, identifier NCT05146804.Keywords: biomarkers; diet; glucoraphanin; hormesis; inflammation; nutrients; phenotypic flexibility; sulforaphane.
DOCUMENT
tIn this study we aimed to identify genes that are responsive to pertussis toxin (PTx) and might eventu-ally be used as biological markers in a testing strategy to detect residual PTx in vaccines. By microarrayanalysis we screened six human cell types (bronchial epithelial cell line BEAS-2B, fetal lung fibroblastcell line MRC-5, primary cardiac microvascular endothelial cells, primary pulmonary artery smooth mus-cle cells, hybrid cell line EA.Hy926 of umbilical vein endothelial cells and epithelial cell line A549 andimmature monocyte-derived dendritic cells) for differential gene expression induced by PTx. Imma-ture monocyte-derived dendritic cells (iMoDCs) were the only cells in which PTx induced significantdifferential expression of genes. Results were confirmed using different donors and further extendedby showing specificity for PTx in comparison to Escherichia coli lipopolysaccharide (LPS) and Bordetellapertussis lipo-oligosaccharide (LOS). Statistical analysis indicated 6 genes, namely IFNG, IL2, XCL1, CD69,CSF2 and CXCL10, as significantly upregulated by PTx which was also demonstrated at the protein levelfor genes encoding secreted proteins. IL-2 and IFN- gave the strongest response. The minimal PTx con-centrations that induced production of IL-2 and IFN- in iMoDCs were 12.5 and 25 IU/ml, respectively.High concentrations of LPS slightly induced IFN- but not IL-2, while LOS and detoxified pertussis toxindid not induce production of either cytokine. In conclusion, using microarray analysis we evaluated sixhuman cell lines/types for their responsiveness to PTx and found 6 PTx-responsive genes in iMoDCs ofwhich IL2 is the most promising candidate to be used as a biomarker for the detection of residual PTx.
DOCUMENT
Background: Physical inactivity and overweight are two known risk factors for postmenopausal breast cancer. Former exercise intervention studies showed that physical activity influences sex hormone levels, known to be related to postmenopausal breast cancer, mainly when concordant loss of body weight was achieved. The question remains whether there is an additional beneficial effect of physical activity when weight loss is reached. The aim of this study is to investigate the effect attributable to exercise on postmenopausal breast cancer risk biomarkers, when equivalent weight loss is achieved compared with diet-induced weight loss. Design: The SHAPE-2 study is a three-armed, multicentre trial. 243 sedentary, postmenopausal women who are overweight or obese (BMI 25–35 kg/m2) are enrolled. After a 4-6 week run-in period, wherein a baseline diet is prescribed, women are randomly allocated to (1) a diet group, (2) an exercise group or (3) a control group. The aim of both intervention groups is to lose an amount of 5–6 kg body weight in 10–14 weeks. The diet group follows an energy restricted diet and maintains the habitual physical activity level. The exercise group participates in a 16-week endurance and strength training programme of 4 hours per week. Furthermore, they are prescribed a moderate caloric restriction. The control group is asked to maintain body weight and continue the run-in baseline diet. Measurements include blood sampling, questionnaires, anthropometrics (weight, height, waist and hip circumference), maximal cycle exercise test (VO2peak), DEXA-scan (body composition) and abdominal MRI (subcutaneous and visceral fat). Primary outcomes are serum levels of oestradiol, oestrone, testosterone and sex hormone binding globulin (SHBG). Discussion: This study will give insight in the potential attributable effect of physical activity on breast cancer risk biomarkers and whether this effect is mediated by changes in body composition, in postmenopausal women. Eventually this may lead to the design of specific lifestyle guidelines for prevention of breast cancer. Trial registration: The SHAPE-2 study is registered in the register of clinicaltrials.gov, Identifier: NCT01511276.
DOCUMENT
Background: Chronic low-grade inflammatory profile (CLIP) is one of the pathways involved in type 2 diabetes (T2D). Currently, there is limited evidence for ameliorating effects of combined lifestyle interventions on CLIP in type 2 diabetes. We investigated whether a 13-week combined lifestyle intervention, using hypocaloric diet and resistance exercise plus high-intensity interval training with or without consumption of a protein drink, affected CLIP in older adults with T2D. Methods: In this post-hoc analysis of the PROBE study 114 adults (≥55 years) with obesity and type 2 (pre-)diabetes had measurements of C-reactive protein (CRP), pro-inflammatory cytokines interleukin (IL)-6, tumor-necrosis-factor (TNF)-α, and monocyte chemoattractant protein (MCP)-1, anti-inflammatory cytokines IL-10, IL-1 receptor antagonist (RA), and soluble tumor-necrosis-factor receptor (sTNFR)1, adipokines leptin and adiponectin, and glycation biomarkers carboxymethyl-lysine (CML) and soluble receptor for advanced glycation end products (sRAGE) from fasting blood samples. A linear mixed model was used to evaluate change in inflammatory biomarkers after lifestyle intervention and effect of the protein drink. Linear regression analysis was performed with parameters of body composition (by dual-energy X-ray absorptiometry) and parameters of insulin resistance (by oral glucose tolerance test). Results: There were no significant differences in CLIP responses between the protein and the control groups. For all participants combined, IL-1RA, leptin and adiponectin decreased after 13 weeks (p = 0.002, p < 0.001 and p < 0.001), while ratios TNF-α/IL-10 and TNF-α/IL-1RA increased (p = 0.003 and p = 0.035). CRP increased by 12 % in participants with low to average CLIP (pre 1.91 ± 0.39 mg/L, post 2.13 ± 1.16 mg/L, p = 0.006) and decreased by 36 % in those with high CLIP (pre 5.14 mg/L ± 1.20, post 3.30 ± 2.29 mg/L, p < 0.001). Change in leptin and IL-1RA was positively associated with change in fat mass (β = 0.133, p < 0.001; β = 0.017, p < 0.001) and insulin resistance (β = 0.095, p = 0.024; β = 0.020, p = 0.001). Change in lean mass was not associated with any of the biomarkers. Conclusion: 13 weeks of combined lifestyle intervention, either with or without protein drink, reduced circulating adipokines and anti-inflammatory cytokine IL-1RA, and increased inflammatory ratios TNF-α/IL-10 and TNF-α/IL-1RA in older adults with obesity and T2D. Effect on CLIP was inversely related to baseline inflammatory status.
DOCUMENT
Objectives: Pulmonary hypertension is one of the leading causes of death in systemic sclerosis. Early detection and treatment of pulmonary hypertension in systemic sclerosis is crucial. Nailfold capillaroscopy microscopy, vascular autoantibodies AT1R and ETAR, and several candidate-biomarkers have the potential to serve as noninvasive tools to identify systemic sclerosis patients at risk for developing pulmonary hypertension. Here, we explore the classifying potential of nailfold capillaroscopy microscopy characteristics and serum levels of selected candidate-biomarkers in a sample of systemic sclerosis patients with and without different forms of pulmonary hypertension.Methods: A total of 81 consecutive systemic sclerosis patients were included, 40 with systemic sclerosis pulmonary hypertension and 41 with no pulmonary hypertension. In each group, quantitative and qualitative nailfold capillaroscopy microscopy characteristics, vascular autoantibodies AT1R and ETAR, and serum levels of 24 soluble serum factors were determined. For evaluation of the nailfold capillaroscopy microscopy characteristics, linear regression analysis accounting for age, sex, and diffusing capacity of the lungs for carbon monoxide percentage predicted was used. Autoantibodies and soluble serum factor levels were compared using two-sample t test with equal variances.Results: No statistically significant differences were observed in quantitative or qualitative nailfold capillaroscopy microscopy characteristics, or vascular autoantibody ETAR and AT1R titer between systemic sclerosis-pulmonary hypertension and systemic sclerosis-no pulmonary hypertension. In contrast, several serum levels of soluble factors differed between groups: Endostatin, sVCAM, and VEGFD were increased, and CXCL4, sVEGFR2, and PDGF-AB/BB were decreased in systemic sclerosis-pulmonary hypertension. Random forest classification identified Endostatin and CXCL4 as the most predictive classifiers to distinguish systemic sclerosispulmonary hypertension from systemic sclerosis-no pulmonary hypertension.Conclusion: This study shows the potential for several soluble serum factors to distinguish systemic sclerosis-pulmonary hypertension from systemic sclerosis-no pulmonary hypertension. We found no classifying potential for qualitative or quantitative nailfold capillaroscopy microscopy characteristics, or vascular autoantibodies.
DOCUMENT