Lignocellulose biorefining is a promising technologyfor the sustainable production of chemicals and biopolymers.Usually, when one component is focused on, the chemical natureand yield of the others are compromised. Thus, one of thebottlenecks in biomass biorefining is harnessing the maximumvalue from all of the lignocellulosic components. Here, we describea mild stepwise process in a flow-through setup leading to separateflow-out streams containing cinnamic acid derivatives, glucose,xylose, and lignin as the main components from differentherbaceous sources. The proposed process shows that minimaldegradation of the individual components and conservation oftheir natural structure are possible. Under optimized conditions,the following fractions are produced from wheat straw based ontheir respective contents in the feed by the ALkaline ACid ENzyme process: (i) 78% ferulic acid from a mild ALkali step, (ii) 51%monomeric xylose free of fermentation inhibitors by mild ACidic treatment, (iii) 82% glucose from ENzymatic degradation ofcellulose, and (iv) 55% native-like lignin. The benefits of using the flow-through setup are demonstrated. The retention of the ligninaryl ether structure was confirmed by HSQC NMR, and this allowed monomers to form from hydrogenolysis. More importantly, thecrude xylose-rich fraction was shown to be suitable for producing polyhydroxybutyrate bioplastics. The direct use of the xylose-richfraction by means of the thermophilic bacteria Schlegelella thermodepolymerans matched 91% of the PHA produced with commercialpure xylose, achieving 138.6 mgPHA/gxylose. Overall, the ALACEN fractionation method allows for a holistic valorization of theprincipal components of herbaceous biomasses.
DOCUMENT
Artikel in Agro & Chemie over de productie van exogene ketonen in het projecten Circulaire Biopolymeren Waardeketens voor PHA en Cellulose.
DOCUMENT
Bioplastics are gaining interest as an alternative to fossil-based plastics. In addition, biodegradable bioplastics may yield biogas after their use, giving an additional benefit. However, the biodegradability time in international norms (35 days) far exceeds processing times in anaerobic digestion facilities (21 days). As the bioplastic packaging does not indicate the actual biodegradability, it is important to understand the time required to biodegrade bioplastic if it ends up in the anaerobic digestion facility along with other organic waste. For this work, cellulose bioplastic film and polylactic acid (PLA) coffee capsules were digested anaerobically at 55 ℃ for 21 days and 35 days, which are the retention times for industrial digestors and as set by international norms, respectively. Different sizes of bioplastics were examined for this work. Bioplastic film produced more biogas than bioplastic coffee capsules. The biodegradability of bioplastic was calculated based on theoretical biogas production. With an increase in retention time, biogas production, as well as biodegradability of bioplastic, increased. The biodegradability was less than 50% at the end of 35 days for both bioplastics, suggesting that complete degradation was not achieved, and thus, the bioplastic would not be suitable for use in biogas digesters currently in use.
LINK
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
Ontwikkelen van bioraffinage-processen is één van de belangrijkste technologische ontwikkelingen voor de transitie van de op fossiele grondstoffen gebaseerde economie naar de biobased economie. Onder bioraffinage verstaat men het geheel aan extractie- en scheidingstechnologieën die het mogelijk maakt om biomassa te fractioneren in zijn individuele componenten. Deze componenten krijgen elk nieuwe hoogwaardige toepassingen. Momenteel zijn in Nederland een gering aantal bedrijven bezig met bioraffinage. Hierbij wordt ge-bruik gemaakt van biomassa’s die tot voor kort gezien werden als afval. Echter, in de biobased economie spreekt men niet over afval maar over nevenstromen. Door nevenstromen te raffineren tot hoogwaardige producten wordt waarde gecreëerd én wordt biomassa volledig benut. De eerste stap in veel bioraffinage-processen is het scheiden van biomassa in de oplosbare waterige fractie en de onoplosbare vezelfractie. De onoplosbare vezelfractie wordt momenteel gebruikt als bijvoorbeeld verpakkingsmateriaal of voedingsvezel in de diervoeding. De oplosbare fractie wordt momenteel als geheel gebruikt in meestal laagwaardige toepassingen zoals diervoeding of biovergisting. Steeds meer bedrijven vragen om hoogwaardigere toepassingen en daarvoor zullen de fracties verder gescheiden moeten worden. De hiervoor benodigde technologieën zijn nog volop in ontwikkeling. Op verzoek van de deelnemende bedrijven zal in dit project een aantal scheidings- en extractietechnologieën met elkaar vergeleken en verder ontwikkeld worden zodat ze als onderdeel van het bioraffinage-proces leiden tot producten met een zo hoogwaardig mogelijke toepassing. De productie van zogenaamde platformchemicaliën met behulp van fermentatie kan één van de toepassingen zijn. Dit project heeft tot doel een proof-of-principle te laten zien om vanuit biomassa tot platformchemicaliën te komen die kunnen worden ingezet als grondstof van bioplastics. Dit project moet leiden tot kennis over en toepassing van bioraffinage extractie- en scheidingstechnologieën waarbij tevens de economische factoren van implementatie van nieuwe processen en toepassingen in kaart wordt gebracht. De kennis zal gedeeld worden met belanghebbende marktpartijen en het onderwijs.
Onderzoekers van het lectoraat Innovative Testing in Life Sciences & Chemistry buigen zich over een geschikt biovergistingsproces voor kleine bedrijven en particulieren in de gebouwde omgeving. Ook wordt onderzocht hoe bioplastics slim kunnen worden verwerkt in biovergisters.Doel Hoe bioplastics afgebroken kunnen worden in een biovergister? Resultaten Bioplastics gemakkelijk en snel afgebroken kunnen worden in een biovergister. Looptijd 01 januari 2021 - 31 oktober 2022 Aanpak Het onderzoek gebeurt in samenwerking met studenten van verschillende opleidingen, het USP Innovatielab Life Sciences en Chemie en de startup Circ die zelfsturende biovergisters ontwikkelt.