In recent years, there has been a steady increase in the number of bioretention systems installed worldwide. However, there has only been limited research on the long-term effectiveness of these sustainable urban drainage system devices. This paper presents the results of a series of controlled field experiments investigating the pollutant removal efficiency of three bio-filtration system that have been in service for over five years in the Sunshine Coast in Australia. The results of this study suggest that the long-term pollution removal performance of these systems may not be as effective as previously thought and further research is needed.
DOCUMENT
Onderzoek in Arnhem leert dat de infiltratiecapaciteiten van doorlatende verharding en regenwatertuinen voldoende is om forse buien te verwerken maar verschillen in tijd en ruimte. Bij goed ontwerp, aanleg en beheer kunnen deze regenwatervoorzieningen een goede bijdrage leveren aan het vasthouden, bergen en afvoeren van regenwater in het stedelijk gebied.
LINK
Floating wetland treatment systems (FWTS) are an innovative stormwater treatment technology currently being trialled on a larger scale in Australia. FWTS provide support for selected plant species to remove pollutants from stormwater discharged into a water body. The plant roots provide large surface areas for biofilm growth, which serves to trap suspended particles and enable the biological uptake of nutrients by the plants. As FWTS can be installed at the start of the construction phase, they can start treating construction runoff almost immediately. FWTS therefore have the potential to provide the full range of stormwater treatment (e.g. sediment and nutrient removal) from the construction phase onwards. A 2,100m 2 FWTS has been installed within a greenfield development site on the Sunshine Coast, Queensland. A four-year research study is currently underway which will target the following three objectives; (1) characterise the water quality of runoff from a greenfield development in the construction and operational phases; (2) verify the stormwater pollution removal performance of a FWTS during the construction and operational phases of a greenfield development; and (3) characterise the ability of FWTS to manage urban lake health. This extended abstract presents the proposed research methodology and anticipated outcomes of the study
MULTIFILE