In recent years, there has been a steady increase in the number of bioretention systems installed worldwide. However, there has only been limited research on the long-term effectiveness of these sustainable urban drainage system devices. This paper presents the results of a series of controlled field experiments investigating the pollutant removal efficiency of three bio-filtration system that have been in service for over five years in the Sunshine Coast in Australia. The results of this study suggest that the long-term pollution removal performance of these systems may not be as effective as previously thought and further research is needed.
DOCUMENT
The results obtained in this study are encouraging and important for the implementation of permeable pavement and swales in The Netherlands, since the performance of SUDS in delta areas and in areas in the world with comparable hydraulic circumstances has been viewed with skepticism. The research undertaken on Dutch SUDS field installations has demonstrated with new, full scale monitoring methods that most of the bioretention swales and permeable pavements tested in this study meet the required hydraulic performance levels even after years in operation and without maintenance. Standardized tests of sedimentation devices however demonstrated that these facilities have a limited effectiveness for particles smaller than 60 µm while receiving a normal hydraulic loading. The applied methods of full scale testing of SUDS can easily be applied to observe the hydraulic performance of swales and permeable pavement after years of operation. Innovative monitoring methods and visualization of these experiments using video footage allows real-time observation of the entire infiltration process. Recording these observations in a logbook can provide insight in their demand of maintenance and can also help to improve their design.
DOCUMENT
Swales are widely used Sustainable Urban Drainage Systems (SuDS) that can reduce peak flow, collect and retain water and improve groundwater recharge. Most previous research has focused on the unsaturated infiltration rates of swales without considering the variation in infiltration rates under extreme climate events, such as multiple stormwater events after a long drought period. Therefore, fieldwork was carried out to collect hydraulic data of three swales under drought conditions followed by high precipitation. For this simulation, a new full-scale infiltration method was used to simulate five rainfall events filling up the total storage volume of the swales under drought conditions. The results were then compared to earlier research under regular circumstances. The results of this study show that three swales situated in the same street show a variation in initial infiltration capacity of 1.6 to 11.9 m/d and show higher infiltration rates under drought conditions. The saturated infiltration rate is up to a factor 4 lower than the initial unsaturated rate with a minimal rate of 0.5 m/d, close to the minimum required infiltration rate. Significant spatial and time variable infiltration rates are also found at similar research locations with multiple green infrastructures in close range. If the unsaturated infiltration capacity is used as the design input for computer models, the infiltration capacity may be significantly overestimated. The innovative method and the results of this study should help stormwater managers to test, model, plan and schedule maintenance requirements with more confidence, so that they will continue to perform satisfactorily over their intended design lifespan.
DOCUMENT