Purpose: Lactate is an established prognosticator in critical care. However, there still is insufficient evidence about its role in predicting outcome in COVID-19. This is of particular concern in older patients who have been mostly affected during the initial surge in 2020. Methods: This prospective international observation study (The COVIP study) recruited patients aged 70 years or older (ClinicalTrials.gov ID: NCT04321265) admitted to an intensive care unit (ICU) with COVID-19 disease from March 2020 to February 2021. In addition to serial lactate values (arterial blood gas analysis), we recorded several parameters, including SOFA score, ICU procedures, limitation of care, ICU- and 3-month mortality. A lactate concentration ≥ 2.0 mmol/L on the day of ICU admission (baseline) was defined as abnormal. The primary outcome was ICU-mortality. The secondary outcomes 30-day and 3-month mortality. Results: In total, data from 2860 patients were analyzed. In most patients (68%), serum lactate was lower than 2 mmol/L. Elevated baseline serum lactate was associated with significantly higher ICU- and 3-month mortality (53% vs. 43%, and 71% vs. 57%, respectively, p < 0.001). In the multivariable analysis, the maximum lactate concentration on day 1 was independently associated with ICU mortality (aOR 1.06 95% CI 1.02–1.11; p = 0.007), 30-day mortality (aOR 1.07 95% CI 1.02–1.13; p = 0.005) and 3-month mortality (aOR 1.15 95% CI 1.08–1.24; p < 0.001) after adjustment for age, gender, SOFA score, and frailty. In 826 patients with baseline lactate ≥ 2 mmol/L sufficient data to calculate the difference between maximal levels on days 1 and 2 (∆ serum lactate) were available. A decreasing lactate concentration over time was inversely associated with ICU mortality after multivariate adjustment for SOFA score, age, Clinical Frailty Scale, and gender (aOR 0.60 95% CI 0.42–0.85; p = 0.004). Conclusion: In critically ill old intensive care patients suffering from COVID-19, lactate and its kinetics are valuable tools for outcome prediction. Trial registration number: NCT04321265.
DOCUMENT
Purpose: In long-track speed skating, drafting is a commonly used phenomenon in training; however, it is not allowed in time-trial races. In speed skating, limited research is available on the physical and psychological impact of drafting. The aim of this study was to determine the influence of “skating alone,” “leading,” or “drafting” on physical intensity (heart rate and blood lactate) and perceived intensity (perceived exertion) of speed skaters. Methods: Twenty-two national-level long-track speed skaters with a mean age of 19.3 (2.6) years skated 5 laps, with similar external intensity in 3 different conditions: skating alone, leading, or drafting. Repeated-measures analysis of variance showed differences between the 3 conditions, heart rate (F2,36 = 10.546, P < .001), lactate (F2,36 = 12.711, P < .001), and rating of perceived exertion (F2,36 = 5.759, P < .01). Results: Heart rate and lactate concentration were significantly lower (P < .001) when drafting compared with leading (heart rate Δ = 7 [8] beats·min–1, 4.0% [4.7%]; lactate Δ = 2.3 [2.3] mmol/L, 28.2% [29.9%]) or skating alone (heart rate Δ = 8 [7.1] beats·min–1, 4.6% [3.9%]; lactate Δ = 2.8 [2.5] mmol/L, 33.6% [23.6%]). Rating of perceived exertion was significantly lower (P < .01) when drafting (Δ = 0.8 [1.0], 16.5% [20.9%]) or leading (Δ = 0.5 [0.9], 7.7% [20.5%]) versus skating alone. Conclusions: With similar external intensity, physical intensity, as well as perceived intensity, is reduced when drafting in comparison with skating alone. A key finding of this study is the psychological effect: Skating alone was shown to be more demanding than leading, whereas leading and drafting were perceived to be similar in terms of perceived exertion. Knowledge about the reduction of internal intensity for a drafting skater compared with leading or skating alone can be used by coaches and trainers to optimize training conditions.
DOCUMENT
The results of this study indicate that whole body metabolic and cardiovascular responses to 140 min of either steady state or variable intensity exercise at the same average intensity are similar, despite differences in skeletal muscle carbohydrate metabolism and recruitment
DOCUMENT