Inertial measurement units (IMUs) allow for measurements of kinematic movements outside the laboratory, persevering the athlete-environment relationship. To use IMUs in a sport-specific setting, it is necessary to validate sport-specific movements. The aim of this study was to assess the concurrent validity of the Xsens IMU system by comparing it to the Vicon optoelectronic motion system for lower-limb joint angle measurements during jump-landing and change-of-direction tasks. Ten recreational athletes performed four tasks; single-leg hop and landing, running double-leg vertical jump landing, single-leg deceleration and push off, and sidestep cut, while kinematics were recorded by 17 IMUs (Xsens Technologies B.V.) and eight motion capture cameras (Vicon Motion Systems, Ltd). Validity of lower-body joint kinematics was assessed using measures of agreement (cross-correlation: XCORR) and error (root mean square deviation and amplitude difference). Excellent agreement was found in the sagittal plane for all joints and tasks (XCORR > 0.92). Highly variable agreement was found for knee and ankle in transverse and frontal plane. Relatively high error rates were found in all joints. In conclusion, this study shows that the Xsens IMU system provides highly comparable waveforms of sagittal lower-body joint kinematics in sport-specific movements. Caution is advised interpreting frontal and transverse plane kinematics as between-system agreement highly varied.
A designerly journey into textiles and HCI leads to thinking about data as a material for a cybernetic future.
MULTIFILE
1. We assessed the hypothesized negative correlation between the influence of multiple predators and body condition and fecundity of the European hare, from 13 areas in the Netherlands. 2. Year-round abundance of predators was estimated by hunters. We quantified predator influence as the sum of their field metabolic rates, as this sum reflects the daily food requirements of multiple individuals. We determined the ratio between body mass and hindfoot length of hares as an index of body condition and the weight of their adrenal gland as a measure of chronic exposure to stress, and we counted the number of placental scars to estimate fecundity of hares. 3. As hypothesized, we found that the sum of field metabolic rate of predators was negatively correlated with body condition and the number of placental scars, whereas it was positively related to the weight of the adrenal glands. In contrast to the sum of the field metabolic rate, the total number of predators did not or weakly affect the investigated risk responses. 4. The sum of the field metabolic rate can be a useful proxy for the influence of multiple predators and takes into account predator abundance, type, body weight, and food requirements of multiple predators. 5. With our findings, our paper contributes to a better understanding of the risk effects of multiple predators on prey fitness. Additionally, we identify a potential contributor to the decline of European hare populations.
MULTIFILE