Background: This follow-up study investigated the year-round effects of a four-week randomized controlled trial using different types of feedback on employees’ physical activity, including a need-supportive coach intervention. Methods: Participants (n=227) were randomly assigned to a Minimal Intervention Group (MIG; no feedback), a Pedometer Group (PG; feedback on daily steps only), a Display Group (DG; feedback on daily steps, on daily moderateto-vigorous physical activity [MVPA] and on total energy expenditure [EE]), or a Coaching Group (CoachG; same as DG with need supportive coaching). Daily physical activity level (PAL; Metabolic Equivalent of Task [MET]), number of daily steps, daily minutes of moderate to vigorous physical activity (MVPA), active daily EE (EE>3 METs) and total daily EE were measured at five time points: before the start of the 4-week intervention, one week after the intervention, and 3, 6, and 12 months after the intervention. Results: For minutes of MVPA, MIG showed higher mean change scores compared with the DG. For steps and daily minutes of MVPA, significantly lower mean change scores emerged for MIG compared with the PG. Participants of the CoachG showed significantly higher change scores in PAL, steps, minutes of MVPA, active EE, total EE compared with the MIG. As hypothesized, participants of the CoachG had significantly higher mean change scores in PAL and total EE compared with groups that only received feedback. However, no significant differences were found for steps, minutes of MVPA and active EE between CoachG and PG. Conclusions: Receiving additional need-supportive coaching resulted in a higher PAL and active EE compared with measurement (display) feedback only. These findings suggest to combine feedback on physical activity with personal coaching in order to facilitate long-term behavioral change. When it comes to increasing steps, minutes of MVPA or active EE, a pedometer constitutes a sufficient tool. Trial registration: Clinical Trails.gov NCT01432327. Date registered: 12 September 2011
Eating rate is a basic determinant of appetite regulation, as people who eat more slowly feel sated earlier and eat less. Without assistance, eating rate is difficult to modify due to its automatic nature. In the current study, participants used an augmented fork that aimed to decelerate their rate of eating. A total of 114 participants were randomly assigned to the Feedback Condition (FC), in which they received vibrotactile feedback from their fork when eating too fast (i.e., taking more than one bite per 10 s), or a Non-Feedback Condition (NFC). Participants in the FC took fewer bites per minute than did those in the NFC. Participants in the FC also had a higher success ratio, indicating that they had significantly more bites outside the designated time interval of 10 s than did participants in the NFC. A slower eating rate, however, did not lead to a significant reduction in the amount of food consumed or level of satiation.These findings indicate that real-time vibrotactile feedback delivered through an augmented fork is capable of reducing eating rate, but there is no evidence from this study that this reduction in eating rate is translated into an increase in satiation or reduction in food consumption. Overall, this study shows that real-time vibrotactile feedback may be a viable tool in interventions that aim to reduce eating rate. The long-term effectiveness of this form of feedback on satiation and food consumption, however, awaits further investigation.
Aims: This systematic review and meta-analysis evaluates the additional effect of exercise to hypocaloric diet on body weight, body composition, glycaemic control and cardio-respiratory fitness in adults with overweight or obesity and type 2 diabetes. Methods: Embase, Medline, Web of Science and Cochrane Central databases were evaluated, and 11 studies were included. Random-effects meta-analysis was performed on body weight and measures of body composition and glycaemic control, to compare the effect of hypocaloric diet plus exercise with hypocaloric diet alone. Results: Exercise interventions consisted of walking or jogging, cycle ergometer training, football training or resistance training and duration varied from 2 to 52 weeks. Body weight and measures of body composition and glycaemic control decreased during both the combined intervention and hypocaloric diet alone. Mean difference in change of body weight (−0.77 kg [95% CI: −2.03; 0.50]), BMI (−0.34 kg/m2 [95% CI: −0.73; 0.05]), waist circumference (−1.42 cm [95% CI: −3.84; 1.00]), fat-free mass (−0.18 kg [95% CI: −0.52; 0.17]), fat mass (−1.61 kg [95% CI: −4.42; 1.19]), fasting glucose (+0.14 mmol/L [95% CI: −0.02; 0.30]), HbA1c (−1 mmol/mol [95% CI: −3; 1], −0.1% [95% CI: −0.2; 0.1]) and HOMA-IR (+0.01 [95% CI: −0.40; 0.42]) was not statistically different between the combined intervention and hypocaloric diet alone. Two studies reported VO2max and showed significant increases upon the addition of exercise to hypocaloric diet. Conclusions: Based on limited data, we did not find additional effects of exercise to hypocaloric diet in adults with overweight or obesity and type 2 diabetes on body weight, body composition or glycaemic control, while cardio-respiratory fitness improved.
Despite the recognized benefits of running for promoting overall health, its widespread adoption faces a significant challenge due to high injury rates. In 2022, runners reported 660,000 injuries, constituting 13% of the total 5.1 million sports-related injuries in the Netherlands. This translates to a disturbing average of 5.5 injuries per 1,000 hours of running, significantly higher than other sports such as fitness (1.5 injuries per 1,000 hours). Moreover, running serves as the foundation of locomotion in various sports. This emphasizes the need for targeted injury prevention strategies and rehabilitation measures. Recognizing this social issue, wearable technologies have the potential to improve motor learning, reduce injury risks, and optimize overall running performance. However, unlocking their full potential requires a nuanced understanding of the information conveyed to runners. To address this, a collaborative project merges Movella’s motion capture technology with Saxion’s expertise in e-textiles and user-centered design. The result is the development of a smart garment with accurate motion capture technology and personalized haptic feedback. By integrating both sensor and actuator technology, feedback can be provided to communicate effective risks and intuitive directional information from a user-centered perspective, leaving visual and auditory cues available for other tasks. This exploratory project aims to prioritize wearability by focusing on robust sensor and actuator fixation, a suitable vibration intensity and responsiveness of the system. The developed prototype is used to identify appropriate body locations for vibrotactile stimulation, refine running styles and to design effective vibration patterns with the overarching objective to promote motor learning and reduce the risk of injuries. Ultimately, this collaboration aims to drive innovation in sports and health technology across different athletic disciplines and rehabilitation settings.
Performance feedback is an important mechanism of adaptation in learning theories, as it provides one of the motivations for organizations to learn (Pettit, Crossan, and Vera 2017). Embedded in the behavioral theory of the firm, organizational learning from performance feedback predicts the probability for organizations to change with an emphasis on organizational aspirations, which serve as a threshold against which absolute performance is evaluated (Cyert and March 1963; Greve 2003). It postulates that performance becomes a ‘problem’, or the trigger to search for alternative procedures, strategies, products and behaviors, when performance is below that threshold. This search is known as problemistic search. Missing from this body of research, is empirically grounded understanding if the characteristics of performance feedback over time matter for the triggering function of the feedback. I explore this gap. This investigation adds temporality as a dimension of the performance feedback concept guided by a worldview of ongoing change and flux where conditions and choices are not given, but made relevant by actors and enacted upon (Tsoukas and Chia 2002). The general aim of the study is to complement the current knowledge of performance feedback as a trigger for problemistic search with an explicit process temporal approach. The main question guiding this project is how temporal patterns of performance feedback influence organizational change, which I answer in four chapters, each zooming into one sub-question.First, I focus on the temporal order of performance feedback by examining performance feedback and change sequences organizations go through. In this section time is under study and the goal is to explore how feedback patterns have evolved over time, just as the change states organizations pass through. Second, I focus on the plurality of performance feedback by investigating performance feedback from multiple aspiration levels (i.e. multiple qualitatively different metrics and multiple reference points) and how over time clusters of performance feedback sequences have evolved. Next, I look into the rate and scope of change relative to performance feedback sequences and add an element of signal strength to the feedback. In the last chapter, time is a predictor (in the sequences), and, it is under study (in the timing of responses). I focus on the timing of organizational responses in relation to performance feedback sequences of multiple metrics and reference points.In sum, all chapters are guided by the timing problem of performance feedback, meaning that performance feedback does not come ‘available’ at a single point in time. Similarly to stones with unequal weight dropped in the river, performance feedback with different strength comes available at multiple points in time and it is plausible that sometimes it is considered by decision-makers as problematic and sometimes it is not, because of the sequence it is part of. Overall, the investigation is grounded in the general principles of organizational learning from performance feedback, and the concept of time as duration, sequences and timing, with a focus on specification of when things happen. The context of the study is universities of applied sciences and hotels in The Netherlands. Project partner: Tilburg University, School of Social and Behavioral Sciences, Department of Organization Studies