Summary Purpose The purpose of this study was to investigate the adoption and actual use of a digital dietary monitoring system (DDMS) and its impact on patient satisfaction with the provided hospital care, body weight changes and health-related quality of life (HRQoL) in patients with potentially curable esophageal cancer planned for surgery. The DDMS enables patients and dietitians to monitor patients' nutritional intake and body weight during the preoperative period. Methods In this prospective observational study, the first 47 included patients received usual nutritional care, and were followed from diagnosis until surgery. After implementation of the DDMS 37 patients were followed, again from diagnosis until surgery. Main outcomes were actual use of the DDMS, by means of adoption and usage measures, overall patient satisfaction (EORTC-INPATSAT32), weight change and HRQoL (EORTC QLQ-C30 and EORTC-OG25). Outcomes were assessed immediately after diagnosis, and 6 and 12 weeks later. Results The system had an adoption rate of 64% and a usage rate of 78%. No significant effects on patient satisfaction were found at 12 weeks after diagnosis between the intervention and the usual care group. The implementation of the DDMS also had no significant effect on body weight and HRQoL over time. Conclusions Patients with potentially curable esophageal cancer planned for surgery were able to use the DDMS. However, no significant effects on patient satisfaction, body weight changes and HRQoL were observed. Further research should focus on the specific needs of patients regarding information and support to preoperatively optimize nutritional intake and nutritional status.
MULTIFILE
BACKGROUND: Early mobilization has been proven effective for patients in intensive care units (ICUs) to improve functional recovery. However, early mobilization of critically ill, often mechanically ventilated, patients is cumbersome because of the attachment to tubes, drains, monitoring devices and muscle weakness. A mobile treadmill with bodyweight support may help to initiate mobilization earlier and more effectively. The aim of this study is to assess the effectiveness of weight-supported treadmill training in critically ill patients during and after ICU stay on time to independent functional ambulation. METHODS: In this randomized controlled trial, a custom-built bedside body weight-supported treadmill will be used and evaluated. Patients are included if they have been mechanically ventilated for at least 48 hours, are able to follow instructions, have quadriceps muscle strength of Medical Research Council sum-score 2 (MRC 2) or higher, can sit unsupported and meet the safety criteria for physical exercise. Exclusion criteria are language barriers, no prior walking ability, contraindications for physiotherapy or a neurological condition as reason for ICU admission. We aim to include 88 patients and randomize them into either the intervention or the control group. The intervention group will receive usual care plus bodyweight-supported treadmill training (BWSTT) daily. The BWSSTT consists of walking on a mobile treadmill while supported by a harness. The control group will receive usual care physiotherapy treatment daily consisting of progressive activities such as bed-cycling and active functional training exercises. In both groups, we will aim for a total of 40 minutes of physiotherapy treatment time every day in one or two sessions, as tolerated by the patient. The primary outcome is time to functional ambulation as measured in days, secondary outcomes include walking distance, muscle strength, status of functional mobility and symptoms of post-traumatic stress. All measurements will be done by assessors who are blinded to the intervention on the regular wards until hospital discharge. DISCUSSION: This will be the first study comparing the effects of BWSTT and conventional physiotherapy for critically ill patients during and after ICU stay. The results of this study contribute to a better understanding of the effectiveness of early physiotherapy interventions for critically ill patients. TRIAL REGISTRATION: Dutch Trial Register (NTR) ID: NL6766. Registered at 1 December 2017.
The retirement phase is an opportunity to integrate healthy (nutrition/exercise) habits into daily life. We conducted this systematic review to assess which nutrition and exercise interventions most effectively improve body composition (fat/muscle mass), body mass index (BMI), and waist circumference (WC) in persons with obesity/overweight near retirement age (ages 55–70 y). We conducted a systematic review and network meta-analysis (NMA) of randomized controlled trials, searching 4 databases from their inception up to July 12, 2022. The NMA was based on a random effects model, pooled mean differences, standardized mean differences, their 95% confidence intervals, and correlations with multi-arm studies. Subgroup and sensitivity analyses were also conducted. Ninety-two studies were included, 66 of which with 4957 participants could be used for the NMA. Identified interventions were clustered into 12 groups: no intervention, energy restriction (i.e., 500–1000 kcal), energy restriction plus high-protein intake (1.1–1.7 g/kg/body weight), intermittent fasting, mixed exercise (aerobic and resistance), resistance training, aerobic training, high protein plus resistance training, energy restriction plus high protein plus exercise, energy restriction plus resistance training, energy restriction plus aerobic training, and energy restriction plus mixed exercise. Intervention durations ranged from 8 wk to 6 mo. Body fat was reduced with energy restriction plus any exercise or plus high-protein intake. Energy restriction alone was less effective and tended to decrease muscle mass. Muscle mass was only significantly increased with mixed exercise. All other interventions including exercise effectively preserved muscle mass. A BMI and/or WC decrease was achieved with all interventions except aerobic training/resistance training alone or resistance training plus high protein. Overall, the most effective strategy for nearly all outcomes was combining energy restriction with resistance training or mixed exercise and high protein. Health care professionals involved in the management of persons with obesity need to be aware that an energy-restricted diet alone may contribute to sarcopenic obesity in persons near retirement age.This network meta-analysis is registered at https://www.crd.york.ac.uk/prospero/ as CRD42021276465.
MULTIFILE