Catalytic pyrolysis of crude glycerol over a shaped H-ZSM-5 zeolite catalyst with (partial) recycling of the product oil was studied with the incentive to improve benzene, toluene, and xylene (BTX) yields. Recycling of the polycyclic aromatic hydrocarbon (PAH) fraction, after separation from BTX by distillation and co-feeding with the crude glycerol feed, was shown to have a positive effect on the BTX yield. Further improvements were achieved by hydrogenation of the PAH fraction using a Ru/C catalyst and hydrogen gas prior to co-pyrolysis, and BTX yields up to 16 wt% on feed were obtained. The concept was also shown to be beneficial to other biomass feeds such as e.g., Kraft lignin, cellulose, and Jatropha oil.
DOCUMENT
The catalytic coconversion of glycerol and toluene (93/7 wt %) over a technical H-ZSM-5/Al2O3 (60-40 wt %) catalyst was studied, aiming for enhanced production of biobased benzene, toluene, and xylenes (bio-BTX). When using glycerol/toluene cofeed with a mass ratio of 93/7 wt %, a peak BTX carbon yield of 29.7 ± 1.1 C.% (at time on stream (TOS) of 1.5-2.5 h), and an overall BTX carbon yield of 28.7 C.% (during TOS of 8.5 h) were obtained, which are considerably higher than those (19.1 ± 0.4 C.% and 11.0 C.%) for glycerol alone. Synergetic effects when cofeeding toluene on the peak and overall BTX carbon yields were observed and quantified, showing a relative increase of 3.1% and 30.0% for the peak and overall BTX carbon yield (based on the feedstock). These findings indicate that the strategy of cofeeding in situ produced toluene for the conversion of glycerol to aromatics has potential to increase BTX yields. In addition, BTX production on the catalyst (based on the fresh catalyst during the first run for TOS of 8.5 h and without regeneration) is significantly improved to 0.547 ton ton-1catalyst (excluding the 76% of toluene product that is 0.595 ton ton-1catalyst for the recycle in the cofeed) for glycerol/toluene cofeed, which was 0.426 ton ton-1catalyst for glycerol alone. In particular, this self-sufficient toluene product recycling strategy is advantageous for the production and selectivity (relative increase of 84.4% and 43.5% during TOS of 8.5 h) of biobased xylenes.
DOCUMENT
A process for the prepn. of arom. compds. from a feed stream contg. biomass or mixts. of biomass, the process comprising: a) subjecting a feed stream contg. biomass or mixts. of biomass to a process to afford a conversion product comprising arom. compds.; b) recovering the arom. compds. from said conversion product; c) sepg. a higher mol. wt. fraction comprising polyarom. hydrocarbons (PAH) from a lower mol. wt. fraction comprising benzene, toluene and xylene (BTX) by distn.; d) reducing at least part of said higher mol. wt. fraction to obtain a reduced fraction comprising polycyclic aliphatics (PCA); and e) subjecting the higher mol. wt. fraction obtained in step c), the reduced fraction obtained in step d), or a mixt. thereof, to a process to obtain lower mol. wt. aroms. (BTX). [on SciFinder(R)]
DOCUMENT
Paper sludge contains papermaking mineral additives and fibers, which could be reused or recycled, thus enhancing the circularity. One of the promising technologies is the fast pyrolysis of paper sludge, which is capable of recovering > 99 wt.% of the fine minerals in the paper sludge and also affording a bio-liquid. The fine minerals (e.g., ‘circular’ CaCO3) can be reused as filler in consumer products thereby reducing the required primary resources. However, the bio-liquid has a lower quality compared to fossil fuels, and only a limited application, e.g., for heat generation, has been applied. This could be significantly improved by catalytic upgrading of the fast pyrolysis vapor, known as an ex-situ catalytic pyrolysis approach. We have recently found that a high-quality bio-oil (mainly ‘bio-based’ paraffins and low-molecular-weight aromatics, carbon yield of 21%, and HHV of 41.1 MJ kg-1) was produced (Chem. Eng. J., 420 (2021), 129714). Nevertheless, catalyst deactivation occurred after a few hours’ of reaction. As such, catalyst stability and regenerability are of research interest and also of high relevance for industrial implementation. This project aims to study the potential of the add-on catalytic upgrading step to the industrial fast pyrolysis of paper sludge process. One important performance metric for sustainable catalysis in the industry is the level of catalyst consumption (kgcat tprod-1) for catalytic pyrolysis of paper sludge. Another important research topic is to establish the correlation between yield and selectivity of the bio-chemicals and the catalyst characteristics. For this, different types of catalysts (e.g., FCC-type E-Cat) will be tested and several reaction-regeneration cycles will be performed. These studies will determine under which conditions catalytic fast pyrolysis of paper sludge is technically and economically viable.
De maatschappij raakt zich in toenemende mate bewust dat het huidige lineaire economisch model niet meer houdbaar is. Het gebruik van petrochemische producten resulteert in een toename van CO2 in de atmosfeer. Verder neemt de hoeveelheid afval, met name plastics, verontrustende vormen aan en raken de oceanen zienderogen meer vervuild. Om de bovengenoemde problemen te tackelen is een transitie naar biobased en circulair essentieel. Naast dat we voor het maken van (consumenten) producten meer gebruik moeten maken van natuurlijke, hernieuwbare grondstofstromen zullen we de huidige materialen tevens veel beter moeten recyclen teneinde de druk op het milieu te verminderen. Een belangrijk thema in het recyclen van plastics is de chemische recycling. Een bekend voorbeeld waar op dit moment onderzoek naar verricht wordt is de depolymerisatie van PET naar de monomeren, GEVOLGD DOOR de scheiding van additieven en kleurstoffen en vervolgens weer een polymerisatie tot het gewenste plastic. In dit project wordt een andere methode voor chemische recycling onderzocht, namelijk de katalytische pyrolyse van (mengsels) van plastics tot de aromaten benzeen, tolueen en xylenen (BTX). Deze aromaten zijn veel gebruikte intermediairen voor tal van hoogwaardige plastics, zoals polyesters, polyamides en polyurethanen. Ruwweg 40% van alle huidige plastics is opgebouwd uit BTX. De techniek kan gebruikt worden voor mengsels van plastics en, door toepassing van de ex situ approach kunnen ook sterk vervuilde plastic stromen omgezet worden naar BTX. In samenwerking met het bedrijf BioBTX gaat de Rijksuniversiteit Groningen een kinetische studie doen naar de omzetting van plastics door gebruik te maken van tweetal geselecteerde plastic voedingen en een modelsysteem (etheen, propeen en mengels) voor de omzetting naar BTX middels een katalytische pyrolyse. De resultaten van deze studie zullen gebruikt worden voor een techno-economische evaluatie om te inventariseren of het proces commercieel aantrekkelijk is en geschikt voor verdere opschaling richting pilot/demoplant.