The main question in this PhD thesis is: How can Business Rules Management be configured and valued in organizations? A BRM problem space framework is proposed, existing of service systems, as a solution to the BRM problems. In total 94 vendor documents and approximately 32 hours of semi-structured interviews were analyzed. This analysis revealed nine individual service systems, in casu elicitation, design, verification, validation, deployment, execution, monitor, audit, and version. In the second part of this dissertation, BRM is positioned in relation to BPM (Business Process Management) by means of a literature study. An extension study was conducted: a qualitative study on a list of business rules formulated by a consulting organization based on the Committee of Sponsoring Organizations of the Treadway Commission risk framework. (from the summary of the Thesis p. 165)
The built environment requires energy-flexible buildings to reduce energy peak loads and to maximize the use of (decentralized) renewable energy sources. The challenge is to arrive at smart control strategies that respond to the increasing variations in both the energy demand as well as the variable energy supply. This enables grid integration in existing energy networks with limited capacity and maximises use of decentralized sustainable generation. Buildings can play a key role in the optimization of the grid capacity by applying demand-side management control. To adjust the grid energy demand profile of a building without compromising the user requirements, the building should acquire some energy flexibility capacity. The main ambition of the Brains for Buildings Work Package 2 is to develop smart control strategies that use the operational flexibility of non-residential buildings to minimize energy costs, reduce emissions and avoid spikes in power network load, without compromising comfort levels. To realise this ambition the following key components will be developed within the B4B WP2: (A) Development of open-source HVAC and electric services models, (B) development of energy demand prediction models and (C) development of flexibility management control models. This report describes the developed first two key components, (A) and (B). This report presents different prediction models covering various building components. The models are from three different types: white box models, grey-box models, and black-box models. Each model developed is presented in a different chapter. The chapters start with the goal of the prediction model, followed by the description of the model and the results obtained when applied to a case study. The models developed are two approaches based on white box models (1) White box models based on Modelica libraries for energy prediction of a building and its components and (2) Hybrid predictive digital twin based on white box building models to predict the dynamic energy response of the building and its components. (3) Using CO₂ monitoring data to derive either ventilation flow rate or occupancy. (4) Prediction of the heating demand of a building. (5) Feedforward neural network model to predict the building energy usage and its uncertainty. (6) Prediction of PV solar production. The first model aims to predict the energy use and energy production pattern of different building configurations with open-source software, OpenModelica, and open-source libraries, IBPSA libraries. The white-box model simulation results are used to produce design and control advice for increasing the building energy flexibility. The use of the libraries for making a model has first been tested in a simple residential unit, and now is being tested in a non-residential unit, the Haagse Hogeschool building. The lessons learned show that it is possible to model a building by making use of a combination of libraries, however the development of the model is very time consuming. The test also highlighted the need for defining standard scenarios to test the energy flexibility and the need for a practical visualization if the simulation results are to be used to give advice about potential increase of the energy flexibility. The goal of the hybrid model, which is based on a white based model for the building and systems and a data driven model for user behaviour, is to predict the energy demand and energy supply of a building. The model's application focuses on the use case of the TNO building at Stieltjesweg in Delft during a summer period, with a specific emphasis on cooling demand. Preliminary analysis shows that the monitoring results of the building behaviour is in line with the simulation results. Currently, development is in progress to improve the model predictions by including the solar shading from surrounding buildings, models of automatic shading devices, and model calibration including the energy use of the chiller. The goal of the third model is to derive recent and current ventilation flow rate over time based on monitoring data on CO₂ concentration and occupancy, as well as deriving recent and current occupancy over time, based on monitoring data on CO₂ concentration and ventilation flow rate. The grey-box model used is based on the GEKKO python tool. The model was tested with the data of 6 Windesheim University of Applied Sciences office rooms. The model had low precision deriving the ventilation flow rate, especially at low CO2 concentration rates. The model had a good precision deriving occupancy from CO₂ concentration and ventilation flow rate. Further research is needed to determine if these findings apply in different situations, such as meeting spaces and classrooms. The goal of the fourth chapter is to compare the working of a simplified white box model and black-box model to predict the heating energy use of a building. The aim is to integrate these prediction models in the energy management system of SME buildings. The two models have been tested with data from a residential unit since at the time of the analysis the data of a SME building was not available. The prediction models developed have a low accuracy and in their current form cannot be integrated in an energy management system. In general, black-box model prediction obtained a higher accuracy than the white box model. The goal of the fifth model is to predict the energy use in a building using a black-box model and measure the uncertainty in the prediction. The black-box model is based on a feed-forward neural network. The model has been tested with the data of two buildings: educational and commercial buildings. The strength of the model is in the ensemble prediction and the realization that uncertainty is intrinsically present in the data as an absolute deviation. Using a rolling window technique, the model can predict energy use and uncertainty, incorporating possible building-use changes. The testing in two different cases demonstrates the applicability of the model for different types of buildings. The goal of the sixth and last model developed is to predict the energy production of PV panels in a building with the use of a black-box model. The choice for developing the model of the PV panels is based on the analysis of the main contributors of the peak energy demand and peak energy delivery in the case of the DWA office building. On a fault free test set, the model meets the requirements for a calibrated model according to the FEMP and ASHRAE criteria for the error metrics. According to the IPMVP criteria the model should be improved further. The results of the performance metrics agree in range with values as found in literature. For accurate peak prediction a year of training data is recommended in the given approach without lagged variables. This report presents the results and lessons learned from implementing white-box, grey-box and black-box models to predict energy use and energy production of buildings or of variables directly related to them. Each of the models has its advantages and disadvantages. Further research in this line is needed to develop the potential of this approach.
B4B is a multi-year, multi-stakeholder project focused on developing methods to harness big data from smart meters, building management systems and the Internet of Things devices, to reduce energy consumption, increase comfort, respond flexibly to user behaviour and local energy supply and demand, and save on installation maintenance costs. This will be done through the development of faster and more efficient Machine Learning and Artificial Intelligence models and algorithms. The project is geared to existing utility buildings such as commercial and institutional buildings.
INXCES will use and enhance innovative 3D terrain analysis and visualization technology coupled with state-of-the-art satellite remote sensing to develop cost-effective risk assessment tools for urban flooding, aquifer recharge, ground stability and subsidence. INXCES will develop quick scan tools that will help decision makers and other actors to improve the understanding of urban and peri-urban terrains and identify options for cost effective implementation of water management solutions that reduce the negative impacts of extreme events, maximize beneficial uses of rainwater and stormwater for small to intermediate events and provide long-term resilience in light of future climate changes. The INXCES approach optimizes the multiple benefits of urban ecosystems, thereby stimulating widespread implementation of nature-based solutions on the urban catchment scale.INXCES will develop new innovative technological methods for risk assessment and mitigation of extreme hydroclimatic events and optimization of urban water-dependent ecosystem services at the catchment level, for a spectrum of rainfall events. It is widely acknowledged that extreme events such as floods and droughts are an increasing challenge, particularly in urban areas. The frequency and intensity of floods and droughts pose challenges for economic and social development, negatively affecting the quality of life of urban populations. Prevention and mitigation of the consequences of hydroclimatic extreme events are dependent on the time scale. Floods are typically a consequence of intense rainfall events with short duration. In relation to prolonged droughts however, a much slower timescale needs to be considered, connected to groundwater level reductions, desiccation and negative consequences for growing conditions and potential ground – and building stability.INXCES will take a holistic spatial and temporal approach to the urban water balance at a catchment scale and perform technical-scientific research to assess, mitigate and build resilience in cities against extreme hydroclimatic events with nature-based solutions.INXCES will use and enhance innovative 3D terrain analysis and visualization technology coupled with state-of-the-art satellite remote sensing to develop cost-effective risk assessment tools for urban flooding, aquifer recharge, ground stability and subsidence. INXCES will develop quick scan tools that will help decision makers and other actors to improve the understanding of urban and peri-urban terrains and identify options for cost effective implementation of water management solutions that reduce the negative impacts of extreme events, maximize beneficial uses of rainwater and stormwater for small to intermediate events and provide long-term resilience in light of future climate changes. The INXCES approach optimizes the multiple benefits of urban ecosystems, thereby stimulating widespread implementation of nature-based solutions on the urban catchment scale.
Polycotton textiles are fabrics made from cotton and polyester. It is used in many textile applications such as sporting cloths, nursery uniforms and bed sheets. As cotton and polyester are quite different in their polymer nature, polycotton textiles are hard to recycle and therefore mostly incinerated. Incineration of discarded polycotton, and substitution by virgin polycotton, create a significant environmental impact. However, textile manufacturers and brand owners will become obliged to apply recycled content in clothing from 2023 onwards. Therefore, the development of more sustainable recycling alternatives for the separation and purification of polycotton into its monomers and cellulose is vital. In a recently approved GoChem project, it has been shown that cotton can be separated from polyester successfully, using a chemical recycling process. The generated solution is a mixture of suspended and partially decolorized cotton (cellulose) and a liquid fraction produced from the depolymerization of the polyester (monomers). A necessary further step of this work is the investigation of possible separation methods to recover the cotton and purify the obtained polyester monomers into polymer-grade pure products suitable for repolymerization. Repolymerize is a new consortium, composed of the first project members, plus a separation and purification process group, to investigate efficient and high yield purification steps to recover these products. The project will focus on possible steps to separate the suspended fraction (cotton) and further recover of high purity ethylene glycol from the rest fraction (polyester depolymerization solution). The main objective is to create essential knowledge so the private partners can evaluate whether such process is technologically and economically feasible.
Making buildings smarter will save energy and make energy systems more flexible to address grid congestion. This is done by adding smart functionalities (such as machine learning and AI) to existing building management systems and by making full use of building data. Applied research and innovation on smart buildings is urgently needed to evaluate the best smart solutions for buildings applicable to different types of buildings across different contexts, and to assess their costs and benefits. Research on smart buildings, therefore, plays a large role in European, national and regional R&I agenda’s on energy, climate and digitalisation. Amsterdam University of Amsterdam (AUAS) has a growing research group on building energy management and smart buildings, supporting the sustainable transition of its own campus and the Amsterdam region. However, to date, AUAS has not been able to engage in international research projects in this area. Recently, AUAS became a partner in an European University Alliance (U!REKA European University), U!REKA comprises of six universities of applied sciences across Europe with its mission focusing on climate neutral communities and cities. Several partners with U!REKA are also conducting research on smart buildings and smart campuses, but, like AUAS, still in relative isolation. U!REKA will provide the collaboration framework for future joint research to be kick-started by the proposed SIA pilot project. In this research project, AUAS will cooperate with the Technical University Eindhoven, Metropolia University of Applied Sciences (Helsinki) and Politecnico de Lisboa (Lisbon) as consortium partners. Supporting partners are Frankfurt University of Applied Sciences, KTH Royal Institute of Technology (Stockholm) and TVVL (Dutch knowledge platform and association of professionals in the installation sector). The research is based on smart building case studies on the campuses of the project partners.