Seamless integration of air segment in the overall multimodal mobility chain is a key challenge to provide more efficient and sustainable transport services. Technology advances offer a unique opportunity to build a new generation of transport services able to match the evolving expectations and needs of society as a whole. In this context, the passenger-centric approach represents a method to inform the design of future mobility services, supporting quality of life, security and services to citizens traveling across Europe. Relying on the concepts of inclusive design, context of use and task analysis, in this article, we present a comprehensive methodological framework for the analysis of passenger characteristics to elicit features and requirements for future multimodal mobility services, including air leg, that are relevant from the perspective of passengers. The proposed methodology was applied to a series of specific use cases envisaged for three time horizons, 2025, 2035 and 2050, in the context of a European research project. Then, passenger-focused key performance indicators and related metrics were derived to be included in a validation step, with the aim of assessing the extent of benefit for passengers that can be achieved in the forecasted scenarios. The results of the study demonstrate the relevance of human variability in the design of public services, as well as the feasibility of personalized performance assessment of mobility services.
Information and communications technologies (ICTs) in human services are on the rise and raise concerns about their place and impact on the daily activities of professionals and clients. This article describes a study in which a social mobile application was developed for job coaches and employees and implemented in a pilot phase. The aim of the mobile application was to provide a better communication between employees and their job coaches and to provide more up-to-date information about the organization. The application consisted of a personal web environment and app with vacancies, personal news, events, tips, and promotions. A qualitative methodology was used in the form of focus groups and in-depth interviews. The results of this study show that the participants are partly positive about the social mobile application. It can be concluded that the use of mobile technologies can be beneficial in a range of human services practice settings for both professionals and clients and, therefore, requires more attention from the academic field to focus on this relatively new but promising theme.
The building and construction industry, which is responsible for 39% of global carbon emissions, is far off track in achieving its net-zero emission targets. Product-service system (PSS) business models are one of the instruments used by the industry in the transition toward reaching these targets. A PSS business model is designed around an end-of-life solution that minimizes material usage and maximizes energy efficiency. It is provided to customers as a marketable set of products and services, jointly capable of fulfilling a customer’s needs. There are signals from practice however, that suggest that the implementation of this type of business model is falling behind. This study investigates this and seeks to identify key challenges and opportunities for sustainable PSS business models in the built environment. Using a grounded theory approach, data from 13 semi-structured interviews across five companies is used to identify challenges and opportunities that suppliers are facing in selling their products through PSS business models. Our preliminary data analysis points to nine challenges and opportunities for PSS business models. We discuss these in the context of the current economic transition toward a sustainable and circular built environment and provide suggestions for further research that could help to overcome resistance toward the implementation of PSS business models. The contribution of this research to researchers and practitioners is that it provides insights into the adoption of new business models in fragmented and competitive business environments.
MULTIFILE
In recent years, ArtEZ has worked on a broadly supported strategic research agenda on the themes New Ecologies of Matter (ecological challenges), Social Equity (social-societal issues), (Un)Learning Practices (educational innovations) and (Non)CybernEtic Fabric (technological developments). Building on these strategic themes, the ArtEZ Research Collective as developed an international research strategy to become a valuable partner in the relevant Horizon Europe (HEU) areas of Environment, Industry and Social science and humanities. With its specific knowledge position and approach from arts and creativity, ArtEZ is convinced that it can play a distinctive role in European consortia to tackle various challenges in these areas, in particular from the perspective and research topics of the professorships Fashion and Tactical Design. To achieve its ambitions and goals in its targeted research topics, ArtEZ is convinced that a combination of international connections and local applications is key for successful impact. Building upon existing relations and extending the international research position requires extra efforts, e.g., by developing a strong international framework of state-of-the-art research results, impacts and ambitions. Therefore ArtEZ needs to (further) build on both its international network and its supportive infrastructure. With this proposal ArtEZ is presenting its goals and efforts to work on its international recognition as a valuable research partner, and to broaden its international network in cutting-edge research and other stakeholders. With regards to its supporting infrastructure, ArtEZ has the ambition to expand the impact of the Subsidy Desk to become a professional partner to the professorships. This approach requires a further professionalization and extension of both the Subsidy Desk organization and its services, and developing and complementing skills, expertise and competences to comply to the European requirements.
“Empowering learners to create a sustainable future” This is the mission of Centre of Expertise Mission-Zero at The Hague University of Applied Sciences (THUAS). The postdoc candidate will expand the existing knowledge on biomimicry, which she teaches and researches, as a strategy to fulfil the mission of Mission-Zero. We know when tackling a design challenge, teams have difficulties sifting through the mass of information they encounter. The candidate aims to recognize the value of systematic biomimicry, leading the way towards the ecosystems services we need tomorrow (Pedersen Zari, 2017). Globally, biomimicry demonstrates strategies contributing to solving global challenges such as Urban Heat Islands (UHI) and human interferences, rethinking how climate and circular challenges are approached. Examples like Eastgate building (Pearce, 2016) have demonstrated successes in the field. While biomimicry offers guidelines and methodology, there is insufficient research on complex problem solving that systems-thinking requires. Our research question: Which factors are needed to help (novice) professionals initiate systems-thinking methods as part of their strategy? A solution should enable them to approach challenges in a systems-thinking manner just like nature does, to regenerate and resume projects. Our focus lies with challenges in two industries with many unsustainable practices and where a sizeable impact is possible: the built environment (Circularity Gap, 2021) and fashion (Joung, 2014). Mission Zero has identified a high demand for Biomimicry in these industries. This critical approach: 1) studies existing biomimetic tools, testing and defining gaps; 2) identifies needs of educators and professionals during and after an inter-disciplinary minor at The Hague University; and, 3) translates findings into shareable best practices through publications of results. Findings will be implemented into tangible engaging tools for educational and professional settings. Knowledge will be inclusive and disseminated to large audiences by focusing on communication through social media and intervention conferences.
A fast growing percentage (currently 75% ) of the EU population lives in urban areas, using 70% of available energy resources. In the global competition for talent, growth and investments, quality of city life and the attractiveness of cities as environments for learning, innovation, doing business and job creation, are now the key parameters for success. Therefore cities need to provide solutions to significantly increase their overall energy and resource efficiency through actions addressing the building stock, energy systems, mobility, and air quality.The European Energy Union of 2015 aims to ensure secure, affordable and climate-friendly energy for EU citizens and businesses among others, by bringing new technologies and renewed infrastructure to cut household bills, create jobs and boost growth, for achieving a sustainable, low carbon and environmentally friendly economy, putting Europe at the forefront of renewable energy production and winning the fight against global warming.However, the retail market is not functioning properly. Many household consumers have too little choices of energy suppliers and too little control over their energy costs. An unacceptably high percentage of European households cannot afford to pay their energy bills. Energy infrastructure is ageing and is not adjusted to the increased production from renewables. As a consequence there is still a need to attract investments, with the current market design and national policies not setting the right incentives and providing insufficient predictability for potential investors. With an increasing share of renewable energy sources in the coming decades, the generation of electricity/energy will change drastically from present-day centralized production by gigawatt fossil-fueled plants towards decentralized generation, in cities mostly by local household and district level RES (e.g PV, wind turbines) systems operating in the level of micro-grids. With the intermittent nature of renewable energy, grid stress is a challenge. Therefore there is a need for more flexibility in the energy system. Technology can be of great help in linking resource efficiency and flexibility in energy supply and demand with innovative, inclusive and more efficient services for citizens and businesses. To realize the European targets for further growth of renewable energy in the energy market, and to exploit both on a European and global level the expected technological opportunities in a sustainable manner, city planners, administrators, universities, entrepreneurs, citizens, and all other relevant stakeholders, need to work together and be the key moving wheel of future EU cities development.Our SolutionIn the light of such a transiting environment, the need for strategies that help cities to smartly integrate technological solutions becomes more and more apparent. Given this condition and the fact that cities can act as large-scale demonstrators of integrated solutions, and want to contribute to the socially inclusive energy and mobility transition, IRIS offers an excellent opportunity to demonstrate and replicate the cities’ great potential. For more information see the HKU Smart Citieswebsite or check out the EU-website.