Current symptom detection methods for energy diagnosis in heating, ventilation and air conditioning (HVAC) systems are not standardised and not consistent with HVAC process and instrumentation diagrams (P&IDs) as used by engineers to design and operate these systems, leading to a very limited application of energy performance diagnosis systems in practice. This paper proposes detection methods to overcome these issues, based on the 4S3F (four types of symptom and three types of faults) framework. A set of generic symptoms divided into three categories (balance, energy performance and operational state symptoms) is discussed and related performance indicators are developed, using efficiencies, seasonal performance factors, capacities, and control and design-based operational indicators. The symptom detection method was applied successfully to the HVAC system of the building of The Hague University of Applied Sciences. Detection results on an annual, monthly and daily basis are discussed and compared. Link to the formail publication via its DOI https://doi.org/10.1016/j.autcon.2020.103344
DOCUMENT
Teachers and students need good learning environments to perform well. In this study it is pre-supposed that the spatial properties of classrooms can contribute to the quality of the educational process. Thermal, acoustic and visual conditions and indoor air quality (IAQ) may be extremely powerful in order to support the in-class tasks of teachers and students. But what are the optimal conditions? And do schools provide optimal indoor 2019 ISES ISIAQ Joint Annual Meeting – Abstracts | 362 environmental conditions? Research shows that adequate ventilation and thermal comfort in classrooms could improve academic performance of students. However, different studies also suggest that poor indoor environmental quality in classrooms are common and, in some cases, even unhealthy. This study investigates the relationship between indoor air quality (IAQ), perceived indoor air quality (PIAQ) and building-related symptomsof students in university classrooms via subjective assessment and objective measurement. This study was carried out in 59 classrooms of a university of applied sciences in the northern part of the Netherlands during heatingseason. Responses from 366 students were obtained through a questionnaire. Results shows that carbon dioxide concentrations (CO2) exceed minimum Dutch guidelines in 36% of the observed classrooms. Moreover, after a 40 minute class this raised to 45% of the observed classes. Poor IAQ can affect teachers and students level of attention, cause arousal and increase the prevalence of building-related symptoms. A significant correlation was found between CO2 concentrations and PIAQ and between PIAQ and the ability to concentrate, tiredness and dry skin. The research findings imply that increased CO2 concentrations will affect the PIAQ of students and may cause inability to concentrate, increased tiredness and dry skin. These building-related symptoms can cause distraction and affect the academic performance of students negatively. It is highly recommended to improve IAQ in classrooms by offering better indoor environmental conditions through reducing CO2 concentrations.
DOCUMENT
Introduction: Depression can be a serious problem in young adult students. There is a need to implement and monitor prevention interventions for these students. Emotion-regulating improvisational music therapy (EIMT) was developed to prevent depression. The purpose of this study was to evaluate the feasibility of EIMT for use in practice for young adult students with depressive symptoms in a university context. Method: A process evaluation was conducted embedded in a larger research project. Eleven students, three music therapists and five referrers were interviewed. The music therapists also completed evaluation forms. Data were collected concerning client attendance, treatment integrity, musical components used to synchronise, and experiences with EIMT and referral. Results: Client attendance (90%) and treatment integrity were evaluated to be sufficient (therapist adherence 83%; competence 84%). The music therapists used mostly rhythm to synchronise (38 of 99 times). The students and music therapists reported that EIMT and its elements evoked changes in all emotion regulation components. The students reported that synchronisation elicited meaningful experiences of expressing joy, feeling heard, feeling joy and bodily responses of relaxation. The music therapists found the manual useful for applying EIMT. The student counsellors experienced EIMT as an appropriate way to support students due to its preventive character. Discussion: EIMT appears to be a feasible means of evoking changes in emotion regulation components in young adult students with depressive symptoms in a university context. More studies are needed to create a more nuanced and evidence-based understanding of the feasibility of EIMT, processes of change and treatment integrity.
DOCUMENT
In practice, faults in building installations are seldom noticed because automated systems to diagnose such faults are not common use, despite many proposed methods: they are cumbersome to apply and not matching the way of thinking of HVAC engineers. Additionally, fault diagnosis and energy performance diagnosis are seldom combined, while energy wastage is mostly a consequence of component, sensors or control faults. In this paper new advances on the 4S3F diagnose framework for automated diagnostic of energy waste in HVAC systems are presented. The architecture of HVAC systems can be derived from a process and instrumentation diagram (P&ID) usually set up by HVAC designers. The paper demonstrates how all possible faults and symptoms can be extracted on a very structured way from the P&ID, and classified in 4 types of symptoms (deviations from balance equations, operational states, energy performances or additional information) and 3 types of faults (component, control and model faults). Symptoms and faults are related to each other through Diagnostic Bayesian Networks (DBNs) which work as an expert system. During operation of the HVAC system the data from the BMS is converted to symptoms, which are fed to the DBN. The DBN analyses the symptoms and determines the probability of faults. Generic indicators are proposed for the 4 types of symptoms. Standard DBN models for common components, controls and models are developed and it is demonstrated how to combine them in order to represent the complete HVAC system. Both the symptom and the fault identification parts are tested on historical BMS data of an ATES system including heat pump, boiler, solar panels, and hydronic systems. The energy savings resulting from fault corrections are estimated and amount 25%. Finally, the 4S3F method is extended to hard and soft sensor faults. Sensors are the core of any FDD system and any control system. Automated diagnostic of sensor faults is therefore essential. By considering hard sensors as components and soft sensors as models, they can be integrated into the 4S3F method.
DOCUMENT
Current methods for energy diagnosis in heating, ventilation and air conditioning (HVAC) systems are not consistent with process and instrumentation diagrams (P&IDs) as used by engineers to design and operate these systems, leading to very limited application of energy performance diagnosis in practice. In a previous paper, a generic reference architecture – hereafter referred to as the 4S3F (four symptoms and three faults) framework – was developed. Because it is closely related to the way HVAC experts diagnose problems in HVAC installations, 4S3F largely overcomes the problem of limited application. The present article addresses the fault diagnosis process using automated fault identification (AFI) based on symptoms detected with a diagnostic Bayesian network (DBN). It demonstrates that possible faults can be extracted from P&IDs at different levels and that P&IDs form the basis for setting up effective DBNs. The process was applied to real sensor data for a whole year. In a case study for a thermal energy plant, control faults were successfully isolated using balance, energy performance and operational state symptoms. Correction of the isolated faults led to annual primary energy savings of 25%. An analysis showed that the values of set probabilities in the DBN model are not outcome-sensitive. Link to the formal publication via its DOI https://doi.org/10.1016/j.enbuild.2020.110289
DOCUMENT
There are currently about 6 million – mainly older – people with dementia in the European Union. With ageing, a number of sensory changes occur. Dementia syndrome exacerbates the effects of these sensory changes and alters perception of stimuli. People with dementia have an altered sensitivity for indoor environmental conditions, which can induce problematic behaviour with burdensome symptoms to both the person with dementia and the family carer. This paper, based on literature review, provides an overview of the indoor environmental parameters, as well as the integrated design and implementation of relevant building systems. The overview is presented in relation to the intrinsic ageing of senses, the responses of older people with dementia and the impact on other relevant stakeholders through the combined use of the International Classification of Functioning, Disability and Health, and the Model of Integrated Building Design. Results are presented as indicators of the basic value, functional value and economic value, as well as a synthesis of building-related solutions. Results can help designers and building services engineers to create optimal environmental conditions inside the living environments for people with dementia, and can be used to raise awareness among health care professionals about of the influence of the indoor environment on behaviour of the person with dementia.
DOCUMENT
In this article a generic fault detection and diagnosis (FDD) method for demand controlled ventilation (DCV) systems is presented. By automated fault detection both indoor air quality (IAQ) and energy performance are strongly increased. This method is derived from a reference architecture based on a network with 3 generic types of faults (component, control and model faults) and 4 generic types of symptoms (balance, energy performance, operational state and additional symptoms). This 4S3F architecture, originally set up for energy performance diagnosis of thermal energy plants is applied on the control of IAQ by variable air volume (VAV) systems. The proposed method, using diagnosis Bayesian networks (DBNs), overcomes problems encountered in current FDD methods for VAV systems, problems which inhibits in practice their wide application. Unambiguous fault diagnosis stays difficult, most methods are very system specific, and finally, methods are implemented at a very late stage, while an implementation during the design of the HVAC system and its control is needed. The IAQ 4S3F method, which solves these problems, is demonstrated for a common VAV system with demand controlled ventilation in an office with the use of a whole year hourly historic Building Management System (BMS) data and showed it applicability successfully. Next to this, the influence of prior and conditional probabilities on the diagnosis is studied. Link to the formal publication via its DOI https://doi.org/10.1016/j.buildenv.2019.106632
DOCUMENT
Abstract Background: COVID-19 was first identified in December 2019 in the city of Wuhan, China. The virus quickly spread and was declared a pandemic on March 11, 2020. After infection, symptoms such as fever, a (dry) cough, nasal congestion, and fatigue can develop. In some cases, the virus causes severe complications such as pneumonia and dyspnea and could result in death. The virus also spread rapidly in the Netherlands, a small and densely populated country with an aging population. Health care in the Netherlands is of a high standard, but there were nevertheless problems with hospital capacity, such as the number of available beds and staff. There were also regions and municipalities that were hit harder than others. In the Netherlands, there are important data sources available for daily COVID-19 numbers and information about municipalities. Objective: We aimed to predict the cumulative number of confirmed COVID-19 infections per 10,000 inhabitants per municipality in the Netherlands, using a data set with the properties of 355 municipalities in the Netherlands and advanced modeling techniques. Methods: We collected relevant static data per municipality from data sources that were available in the Dutch public domain and merged these data with the dynamic daily number of infections from January 1, 2020, to May 9, 2021, resulting in a data set with 355 municipalities in the Netherlands and variables grouped into 20 topics. The modeling techniques random forest and multiple fractional polynomials were used to construct a prediction model for predicting the cumulative number of confirmed COVID-19 infections per 10,000 inhabitants per municipality in the Netherlands. Results: The final prediction model had an R2 of 0.63. Important properties for predicting the cumulative number of confirmed COVID-19 infections per 10,000 inhabitants in a municipality in the Netherlands were exposure to particulate matter with diameters <10 μm (PM10) in the air, the percentage of Labour party voters, and the number of children in a household. Conclusions: Data about municipality properties in relation to the cumulative number of confirmed infections in a municipality in the Netherlands can give insight into the most important properties of a municipality for predicting the cumulative number of confirmed COVID-19 infections per 10,000 inhabitants in a municipality. This insight can provide policy makers with tools to cope with COVID-19 and may also be of value in the event of a future pandemic, so that municipalities are better prepared.
LINK
The Heating Ventilation and Air Conditioning (HVAC) sector is responsible for a large part of the total worldwide energy consumption, a significant part of which is caused by incorrect operation of controls and maintenance. HVAC systems are becoming increasingly complex, especially due to multi-commodity energy sources, and as a result, the chance of failures in systems and controls will increase. Therefore, systems that diagnose energy performance are of paramount importance. However, despite much research on Fault Detection and Diagnosis (FDD) methods for HVAC systems, they are rarely applied. One major reason is that proposed methods are different from the approaches taken by HVAC designers who employ process and instrumentation diagrams (P&IDs). This led to the following main research question: Which FDD architecture is suitable for HVAC systems in general to support the set up and implementation of FDD methods, including energy performance diagnosis? First, an energy performance FDD architecture based on information embedded in P&IDs was elaborated. The new FDD method, called the 4S3F method, combines systems theory with data analysis. In the 4S3F method, the detection and diagnosis phases are separated. The symptoms and faults are classified into 4 types of symptoms (deviations from balance equations, operating states (OS) and energy performance (EP), and additional information) and 3 types of faults (component, control and model faults). Second, the 4S3F method has been tested in four case studies. In the first case study, the symptom detection part was tested using historical Building Management System (BMS) data for a whole year: the combined heat and power plant of the THUAS (The Hague University of Applied Sciences) building in Delft, including an aquifer thermal energy storage (ATES) system, a heat pump, a gas boiler and hot and cold water hydronic systems. This case study showed that balance, EP and OS symptoms can be extracted from the P&ID and the presence of symptoms detected. In the second case study, a proof of principle of the fault diagnosis part of the 4S3F method was successfully performed on the same HVAC system extracting possible component and control faults from the P&ID. A Bayesian Network diagnostic, which mimics the way of diagnosis by HVAC engineers, was applied to identify the probability of all possible faults by interpreting the symptoms. The diagnostic Bayesian network (DBN) was set up in accordance with the P&ID, i.e., with the same structure. Energy savings from fault corrections were estimated to be up to 25% of the primary energy consumption, while the HVAC system was initially considered to have an excellent performance. In the third case study, a demand-driven ventilation system (DCV) was analysed. The analysis showed that the 4S3F method works also to identify faults on an air ventilation system.
DOCUMENT
Thermal comfort -the state of mind, which expresses satisfaction with the thermal environment- is an important aspect of the building design process as modern man spends most of the day indoors. This paper reviews the developments in indoor thermal comfort research and practice since the second half of the 1990s, and groups these developments around two main themes; (i) thermal comfort models and standards, and (ii) advances in computerization. Within the first theme, the PMV-model (Predicted Mean Vote), created by Fanger in the late 1960s is discussed in the light of the emergence of models of adaptive thermal comfort. The adaptive models are based on adaptive opportunities of occupants and are related to options of personal control of the indoor climate and psychology and performance. Both models have been considered in the latest round of thermal comfort standard revisions. The second theme focuses on the ever increasing role played by computerization in thermal comfort research and practice, including sophisticated multi-segmental modeling and building performance simulation, transient thermal conditions and interactions, thermal manikins.
DOCUMENT