Clima2025 paper
MULTIFILE
People in western countries spend approximately 90% of their time indoors. This severely affects their health (WHO 2013; Klepeis et al. 2001). The health risks are exacerbated if people travel between indoor spaces by car or public transport. Buildings on streets specifically designed to create a human scale and connected with the street-space can potentially invite people to walk and enhance their engagement with their surroundings (O’Mara 2019; Ewing et al. 2013). Since the 1960s, influential empirical studies have raised awareness of the walkability of streets (e.g. Jacobs 2008) but reliable evidence on the effectiveness of applied design solutions remains scarce (Spanjar & Suurenbroek 2020). This eye-tracking study focused on the visual ‘scanning’ of streetscapes and people’s appreciation of applied design principles. The aim was to gather together lessons learned from a variety of streetscapes in cities around the world and use them to inform the design of new developments in the Netherlands. Google Street View was used to select 19 images of streets in high-density environments with human-scale attributes in their façades and street-spaces. They were presented in a randomized order in a laboratory setting to 40 participants, who viewed them for 5 seconds. The participants’ visual explorative behaviour was recorded with advanced eye-tracking technology. A survey recorded their overall appreciation of the scenes and mouse-tracking collated their specific areas of interest (see fig. 1). The comparative analysis of the participants’ aggregated eye-fixation images together with the supplementary methods suggests that certain attributes for creating a human scale catch the eye in the first few seconds and are highly appreciated. These include the variety of a street’s façades, a street’s enclosedness, and the level of detail in the transition zone between the private ground floor and the public street (see fig. 2). Green features are particularly valued and might have important restorative qualities for people who spend most of their time indoors (Kaplan 1995; Ulrich 1984). Future research should focus on the design of façades and the street-space itself, taking people’s indoor lives and related stress levels as a starting point.
People in western countries spend approximately 90% of their time indoors. This severely affects their health (WHO 2013; Klepeis et al. 2001). The health risks are exacerbated if people travel between indoor spaces by car or public transport. Buildings on streets specifically designed to create a human scale and connected with the street-space can potentially invite people to walk and enhance their engagement with their surroundings (O’Mara 2019; Ewing et al. 2013). Since the 1960s, influential empirical studies have raised awareness of the walkability of streets (e.g. Jacobs 2008) but reliable evidence on the effectiveness of applied design solutions remains scarce (Spanjar & Suurenbroek 2020). This eye-tracking study focused on the visual ‘scanning’ of streetscapes and people’s appreciation of applied design principles. The aim was to gather together lessons learned from a variety of streetscapes in cities around the world and use them to inform the design of new developments in the Netherlands. Google Street View was used to select 19 images of streets in high-density environments with human-scale attributes in their façades and street-spaces. They were presented in a randomized order in a laboratory setting to 40 participants, who viewed them for 5 seconds. The participants’ visual explorative behaviour was recorded with advanced eye-tracking technology. A survey recorded their overall appreciation of the scenes and mouse-tracking collated their specific areas of interest (see fig. 1). The comparative analysis of the participants’ aggregated eye-fixation images together with the supplementary methods suggests that certain attributes for creating a human scale catch the eye in the first few seconds and are highly appreciated. These include the variety of a street’s façades, a street’s enclosedness, and the level of detail in the transition zone between the private ground floor and the public street (see fig. 2). Green features are particularly valued and might have important restorative qualities for people who spend most of their time indoors (Kaplan 1995; Ulrich 1984). Future research should focus on the design of façades and the street-space itself, taking people’s indoor lives and related stress levels as a starting point.
The postdoc candidate, Giuliana Scuderi, will strengthen the connection between the research group Biobased Buildings (BB), (collaboration between Avans University of Applied Sciences and HZ University of Applied Sciences (HZ), and the Civil Engineering bachelor programme (CE) of HZ. The proposed research aims at deepening the knowledge about the mechanical properties of biobased materials for the application in the structural and infrastructural sectors. The research is relevant for the professional field, which is looking for safe and sustainable alternatives to traditional building materials (such as lignin asphalt, biobased panels for bridge constructions, etc.). The study of the mechanical behaviour of traditional materials (such as concrete and steel) is already part of the CE curriculum, but the ambition of this postdoc is that also BB principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop a biobased material science line and will facilitate applied research experiences for students, in collaboration with engineering and architectural companies, material producers and governmental bodies. Consequently, a new generation of environmentally sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment, with possible connections with other fields of study, such as Architecture, Engineering, Economics and Chemistry. The project is also relevant for the National Science Agenda (NWA), being a crossover between the routes “Materialen – Made in Holland” and “Circulaire economie en grondstoffenefficiëntie”. The final products will be ready-to-use guidelines for the applications of biobased materials, a portfolio of applications and examples, and a new continuous learning line about biobased material science within the CE curriculum. The postdoc will be mentored and supervised by the Lector of the research group and by the study programme coordinator. The personnel policy and job function series of HZ facilitates the development opportunity.
Buildings are responsible for approximately 40% of energy consumption and 36% of carbon dioxide (CO2) emissions in the EU, and the largest energy consumer in Europe (https://ec.europa.eu/energy). Recent research shows that more than 2/3 of all CO2 is emitted during the building process whereas less than 1/3 is emitted during use. Cement is the source of about 8% of the world's CO2 emissions and innovation to create a distributive change in building practices is urgently needed, according to Chatham House report (Lehne et al 2018). Therefore new sustainable materials must be developed to replace concrete and fossil based building materials. Lightweight biobased biocomposites are good candidates for claddings and many other non-bearing building structures. Biocarbon, also commonly known as Biochar, is a high-carbon, fine-grained solid that is produced through pyrolysis processes and currently mainly used for energy. Recently biocarbon has also gained attention for its potential value with in industrial applications such as composites (Giorcellia et al, 2018; Piri et.al, 2018). Addition of biocarbon in the biocomposites is likely to increase the UV-resistance and fire resistance of the materials and decrease hydrophilic nature of composites. Using biocarbon in polymer composites is also interesting because of its relatively low specific weight that will result to lighter composite materials. In this Building Light project the SMEs Torrgas and NPSP will collaborate with and Avans/CoE BBE in a feasibility study on the use of biocarbon in a NPSP biocomposite. The physicochemical properties and moisture absorption of the composites with biocarbon filler will be compared to the biocomposite obtained with the currently used calcium carbonate filler. These novel biocarbon-biocomposites are anticipated to have higher stability and lighter weight, hence resulting to a new, exciting building materials that will create new business opportunities for both of the SME partners.
Client: Foundation Innovation Alliance (SIA - Stichting Innovatie Alliantie) with funding from the ministry of Education, Culture and Science (OCW) Funder: RAAK (Regional Attention and Action for Knowledge circulation) The RAAK scheme is managed by the Foundation Innovation Alliance (SIA - Stichting Innovatie Alliantie) with funding from the ministry of Education, Culture and Science (OCW). Early 2013 the Centre for Sustainable Tourism and Transport started work on the RAAK-MKB project ‘Carbon management for tour operators’ (CARMATOP). Besides NHTV, eleven Dutch SME tour operators, ANVR, HZ University of Applied Sciences, Climate Neutral Group and ECEAT initially joined this 2-year project. The consortium was later extended with IT-partner iBuildings and five more tour operators. The project goal of CARMATOP was to develop and test new knowledge about the measurement of tour package carbon footprints and translate this into a simple application which allows tour operators to integrate carbon management into their daily operations. By doing this Dutch tour operators are international frontrunners.Why address the carbon footprint of tour packages?Global tourism contribution to man-made CO2 emissions is around 5%, and all scenarios point towards rapid growth of tourism emissions, whereas a reverse development is required in order to prevent climate change exceeding ‘acceptable’ boundaries. Tour packages have a high long-haul and aviation content, and the increase of this type of travel is a major factor in tourism emission growth. Dutch tour operators recognise their responsibility, and feel the need to engage in carbon management.What is Carbon management?Carbon management is the strategic management of emissions in one’s business. This is becoming more important for businesses, also in tourism, because of several economical, societal and political developments. For tour operators some of the most important factors asking for action are increasing energy costs, international aviation policy, pressure from society to become greener, increasing demand for green trips, and the wish to obtain a green image and become a frontrunner among consumers and colleagues in doing so.NetworkProject management was in the hands of the Centre for Sustainable Tourism and Transport (CSTT) of NHTV Breda University of Applied Sciences. CSTT has 10 years’ experience in measuring tourism emissions and developing strategies to mitigate emissions, and enjoys an international reputation in this field. The ICT Associate Professorship of HZ University of Applied Sciences has longstanding expertise in linking varying databases of different organisations. Its key role in CARMATOP was to create the semantic wiki for the carbon calculator, which links touroperator input with all necessary databases on carbon emissions. Web developer ibuildings created the Graphical User Interface; the front end of the semantic wiki. ANVR, the Dutch Association of Travel Agents and Tour operators, represents 180 tour operators and 1500 retail agencies in the Netherlands, and requires all its members to meet a minimum of sustainable practices through a number of criteria. ANVR’s role was in dissemination, networking and ensuring CARMATOP products will last. Climate Neutral Group’s experience with sustainable entrepreneurship and knowledge about carbon footprint (mitigation), and ECEAT’s broad sustainable tourism network, provided further essential inputs for CARMATOP. Finally, most of the eleven tour operators are sustainable tourism frontrunners in the Netherlands, and are the driving forces behind this project.