Introduction: Besides dyspnoea and cough, patients with idiopathic pulmonary fibrosis (IPF) or sarcoidosis may experience distressing non-respiratory symptoms, such as fatigue or muscle weakness. However, whether and to what extent symptom burden differs between patients with IPF or sarcoidosis and individuals without respiratory disease remains currently unknown. Objectives: To study the respiratory and non-respiratory burden of multiple symptoms in patients with IPF or sarcoidosis and to compare the symptom burden with individuals without impaired spirometric values, FVC and FEV1 (controls). Methods: Demographics and symptoms were assessed in 59 patients with IPF, 60 patients with sarcoidosis and 118 controls (age ≥18 years). Patients with either condition were matched to controls by sex and age. Severity of 14 symptoms was assessed using a Visual Analogue Scale. Results: 44 patients with IPF (77.3% male; age 70.6±5.5 years) and 44 matched controls, and 45 patients with sarcoidosis (48.9% male; age 58.1±8.6 year) and 45 matched controls were analyzed. Patients with IPF scored higher on 11 symptoms compared to controls (p<0.05), with the largest differences for dyspnoea, cough, fatigue, muscle weakness and insomnia. Patients with sarcoidosis scored higher on all 14 symptoms (p<0.05), with the largest differences for dyspnoea, fatigue, cough, muscle weakness, insomnia, pain, itch, thirst, micturition (night, day). Conclusions: Generally, respiratory and non-respiratory symptom burden is significantly higher in patients with IPF or sarcoidosis compared to controls. This emphasizes the importance of awareness for respiratory and non-respiratory symptom burden in IPF or sarcoidosis and the need for additional research to study the underlying mechanisms and subsequent interventions.
The need for care will increase in the coming years. Most people with a disability or old age receive support from an informal caregiver. Caring for a person with dementia can be difficult because of the BPSD (Behavioral and Psychological Symptoms of Dementia). BPSD, including sleep disturbance, is an important factor for a higher care load. In this scoping review, we aim to investigate whether technology is available to support the informal caregiver, to lower the care burden, improve sleep quality, and therefore influence the reduction of social isolation of informal caregivers of people with dementia. A scoping review is performed following the methodological framework by Arksey and O'Mally and Rumrill et al., the scoping review includes scientific and other sources (unpublished literature, websites, reports, etc.). The findings of the scoping review shows that there are technology applications available to support the informal caregiver of a person with dementia. The technology applications mostly contribute to lower the care burden and/or improve sleep quality and therefore may contribute to reduce social isolation. The technology applications found target either the person with dementia, the informal caregiver, or both.
LINK
The objective of this thesis is to make a first step towards prevention of the progression of chronic venous disease and the development of a first venous leg ulcer in chronic venous disease patients. The aim is to identify chronic venous disease patients at risk of developing more severe clinical stages, provide insight in the lifestyle related risk factors, and provide an overview of current chronic venous disease care in the Netherlands.
Huntington’s disease (HD) and various spinocerebellar ataxias (SCA) are autosomal dominantly inherited neurodegenerative disorders caused by a CAG repeat expansion in the disease-related gene1. The impact of HD and SCA on families and individuals is enormous and far reaching, as patients typically display first symptoms during midlife. HD is characterized by unwanted choreatic movements, behavioral and psychiatric disturbances and dementia. SCAs are mainly characterized by ataxia but also other symptoms including cognitive deficits, similarly affecting quality of life and leading to disability. These problems worsen as the disease progresses and affected individuals are no longer able to work, drive, or care for themselves. It places an enormous burden on their family and caregivers, and patients will require intensive nursing home care when disease progresses, and lifespan is reduced. Although the clinical and pathological phenotypes are distinct for each CAG repeat expansion disorder, it is thought that similar molecular mechanisms underlie the effect of expanded CAG repeats in different genes. The predicted Age of Onset (AO) for both HD, SCA1 and SCA3 (and 5 other CAG-repeat diseases) is based on the polyQ expansion, but the CAG/polyQ determines the AO only for 50% (see figure below). A large variety on AO is observed, especially for the most common range between 40 and 50 repeats11,12. Large differences in onset, especially in the range 40-50 CAGs not only imply that current individual predictions for AO are imprecise (affecting important life decisions that patients need to make and also hampering assessment of potential onset-delaying intervention) but also do offer optimism that (patient-related) factors exist that can delay the onset of disease.To address both items, we need to generate a better model, based on patient-derived cells that generates parameters that not only mirror the CAG-repeat length dependency of these diseases, but that also better predicts inter-patient variations in disease susceptibility and effectiveness of interventions. Hereto, we will use a staggered project design as explained in 5.1, in which we first will determine which cellular and molecular determinants (referred to as landscapes) in isogenic iPSC models are associated with increased CAG repeat lengths using deep-learning algorithms (DLA) (WP1). Hereto, we will use a well characterized control cell line in which we modify the CAG repeat length in the endogenous ataxin-1, Ataxin-3 and Huntingtin gene from wildtype Q repeats to intermediate to adult onset and juvenile polyQ repeats. We will next expand the model with cells from the 3 (SCA1, SCA3, and HD) existing and new cohorts of early-onset, adult-onset and late-onset/intermediate repeat patients for which, besides accurate AO information, also clinical parameters (MRI scans, liquor markers etc) will be (made) available. This will be used for validation and to fine-tune the molecular landscapes (again using DLA) towards the best prediction of individual patient related clinical markers and AO (WP3). The same models and (most relevant) landscapes will also be used for evaluations of novel mutant protein lowering strategies as will emerge from WP4.This overall development process of landscape prediction is an iterative process that involves (a) data processing (WP5) (b) unsupervised data exploration and dimensionality reduction to find patterns in data and create “labels” for similarity and (c) development of data supervised Deep Learning (DL) models for landscape prediction based on the labels from previous step. Each iteration starts with data that is generated and deployed according to FAIR principles, and the developed deep learning system will be instrumental to connect these WPs. Insights in algorithm sensitivity from the predictive models will form the basis for discussion with field experts on the distinction and phenotypic consequences. While full development of accurate diagnostics might go beyond the timespan of the 5 year project, ideally our final landscapes can be used for new genetic counselling: when somebody is positive for the gene, can we use his/her cells, feed it into the generated cell-based model and better predict the AO and severity? While this will answer questions from clinicians and patient communities, it will also generate new ones, which is why we will study the ethical implications of such improved diagnostics in advance (WP6).
Dit project exploreert de potentie van een eHealth-gebaseerde hoofdpijnapp ‘Hoofdpunt’ voor fysiotherapeuten en hoofdpijnverpleegkundigen die patiënten met hardnekkige hoofdpijn of ernstige migraine ondersteunen bij het (weer) optimaal kunnen functioneren in hun dagelijkse leven. Het concept is gebaseerd op een recent ontwikkelde interactieve app die fysiotherapeuten ondersteunt bij blended coaching van rugpijnpatiënten naar eigen regie over leven met lage rugpijn. De inhoud van deze app is gestoeld op een cognitieve gedragstherapeutische benadering (de Acceptance and Commitment Therapy: ACT) die de persoonlijke situatie, wensen en klachten van de patiënten als uitgangspunt neemt bij blended coaching naar eigen regie. Eerstelijns fysiotherapeuten en hoofdpijnverpleegkundigen van hoofdpijncentra willen het potentieel van bovenstaand concept exploreren voor hun ondersteuning van patiënten met hardnekkige hoofdpijn of ernstige migraine. Een optimale benutting van app-technologie in combinatie met het ACT-concept draagt naar verwachting bij aan hun mogelijkheden om patiënten inzicht te verschaffen in factoren die de ‘uitlokkers’ van hoofdpijn en de hevigheid van symptomen beïnvloeden. Het belang daarvan is gelegen in de forse aanslag van ernstige hoofdpijn op de kwaliteit van leven. Migraine staat bijvoorbeeld op de tweede plaats van de Global Burden of Disease Study. De met hoofdpijn en migraine gemoeide kosten zijn hoog als gevolg van veelvuldig medicatiegebruik en hoog ziekteverzuim. Inzicht in beïnvloedende factoren stelt patiënten in staat om eigen regie en verantwoordelijkheid te nemen over het dagelijkse functioneren en kan aanvallen van hoofdpijn/migraine voorkomen en/of verzachten. De verwachting is dat medicatiegebruik en ziekteverzuim daardoor zullen afnemen. In dit project exploreren wij aan de hand van actieonderzoek de wensen en mogelijkheden van de ‘Hoofdpunt-app’ bij zorgprofessionals en patiënten. Het project is een voorbereiding op de evaluatie van de doelmatigheid van deze ondersteuning bij hoofdpijninterventie.