Abstract: Background: Chronic obstructive pulmonary disease (COPD) and asthma have a high prevalence and disease burden. Blended self-management interventions, which combine eHealth with face-to-face interventions, can help reduce the disease burden. Objective: This systematic review and meta-analysis aims to examine the effectiveness of blended self-management interventions on health-related effectiveness and process outcomes for people with COPD or asthma. Methods: PubMed, Web of Science, COCHRANE Library, Emcare, and Embase were searched in December 2018 and updated in November 2020. Study quality was assessed using the Cochrane risk of bias (ROB) 2 tool and the Grading of Recommendations, Assessment, Development, and Evaluation. Results: A total of 15 COPD and 7 asthma randomized controlled trials were included in this study. The meta-analysis of COPD studies found that the blended intervention showed a small improvement in exercise capacity (standardized mean difference [SMD] 0.48; 95% CI 0.10-0.85) and a significant improvement in the quality of life (QoL; SMD 0.81; 95% CI 0.11-1.51). Blended intervention also reduced the admission rate (relative ratio [RR] 0.61; 95% CI 0.38-0.97). In the COPD systematic review, regarding the exacerbation frequency, both studies found that the intervention reduced exacerbation frequency (RR 0.38; 95% CI 0.26-0.56). A large effect was found on BMI (d=0.81; 95% CI 0.25-1.34); however, the effect was inconclusive because only 1 study was included. Regarding medication adherence, 2 of 3 studies found a moderate effect (d=0.73; 95% CI 0.50-0.96), and 1 study reported a mixed effect. Regarding self-management ability, 1 study reported a large effect (d=1.15; 95% CI 0.66-1.62), and no effect was reported in that study. No effect was found on other process outcomes. The meta-analysis of asthma studies found that blended intervention had a small improvement in lung function (SMD 0.40; 95% CI 0.18-0.62) and QoL (SMD 0.36; 95% CI 0.21-0.50) and a moderate improvement in asthma control (SMD 0.67; 95% CI 0.40-0.93). A large effect was found on BMI (d=1.42; 95% CI 0.28-2.42) and exercise capacity (d=1.50; 95% CI 0.35-2.50); however, 1 study was included per outcome. There was no effect on other outcomes. Furthermore, the majority of the 22 studies showed some concerns about the ROB, and the quality of evidence varied. Conclusions: In patients with COPD, the blended self-management interventions had mixed effects on health-related outcomes, with the strongest evidence found for exercise capacity, QoL, and admission rate. Furthermore, the review suggested that the interventions resulted in small effects on lung function and QoL and a moderate effect on asthma control in patients with asthma. There is some evidence for the effectiveness of blended self-management interventions for patients with COPD and asthma; however, more research is needed. Trial Registration: PROSPERO International Prospective Register of Systematic Reviews CRD42019119894; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=119894
DOCUMENT
Chronic diseases represent a significant burden for the society and health systems; addressing this burden is a key goal of the European Union policy. Health and other professionals are expected to deliver behaviour change support to persons with chronic disease. A skill gap in behaviour change support has been identified, and there is room for improvement. Train4Health is a strategic partnership involving seven European Institutions in five countries, which seeks to improve behaviour change support competencies for the self-management of chronic disease. The project envisages a continuum in behaviour change support education, in which an interprofessional competency framework, relevant for those currently practising, guides the development of a learning outcomes-based curriculum and an educational package for future professionals (today’s undergraduate students).
DOCUMENT
Background: Burden of disease estimates are an important resource in public health. Currently, robust estimates are not available for the burn population. Our objectives are to adapt a refined methodology (INTEGRIS method) to burns and to apply this new INTEGRIS-burns method to estimate, and compare, the burden of disease of burn injuries in Australia, New Zealand and the Netherlands. Methods: Existing European and Western-Australian health-related quality of life (HRQL) datasets were combined to derive disability weights for three homogenous burn injury groups based on percentage total body surface area (%TBSA) burned. Subsequently, incidence data from Australia, New Zealand, and the Netherlands from 2010 to 2017 were used to compute annual non-fatal burden of disease estimates for each of these three countries. Non-fatal burden of disease was measured by years lived with disability (YLD). Results: The combined dataset included 7159 HRQL (EQ-5D-3 L) outcomes from 3401 patients. Disability weights ranged from 0.046 (subgroup <5% TBSA burned > 24 months post-burn) to 0.497 (subgroup > 20% TBSA burned 0-1 months post-burn). In 2017 the non-fatal burden of disease of burns for the three countries (YLDs/100,000 inhabitants) was 281 for Australia, 279 for New Zealand and 133 for the Netherlands. Conclusions: This project established a method for more precise estimates of the YLDs of burns, as it is the only method adapted to the nature of burn injuries and their recovery. Compared to previous used methods, the INTEGRIS-burns method includes improved disability weights based on severity categorization of burn patients; a better substantiated proportion of patients with lifelong disability based; and, the application of burn specific recovery timeframes. Information derived from the adapted method can be used as input for health decision making at both the national and international level. Future studies should investigate whether the application is valid in low- and middle- income countries.
DOCUMENT
Huntington’s disease (HD) and various spinocerebellar ataxias (SCA) are autosomal dominantly inherited neurodegenerative disorders caused by a CAG repeat expansion in the disease-related gene1. The impact of HD and SCA on families and individuals is enormous and far reaching, as patients typically display first symptoms during midlife. HD is characterized by unwanted choreatic movements, behavioral and psychiatric disturbances and dementia. SCAs are mainly characterized by ataxia but also other symptoms including cognitive deficits, similarly affecting quality of life and leading to disability. These problems worsen as the disease progresses and affected individuals are no longer able to work, drive, or care for themselves. It places an enormous burden on their family and caregivers, and patients will require intensive nursing home care when disease progresses, and lifespan is reduced. Although the clinical and pathological phenotypes are distinct for each CAG repeat expansion disorder, it is thought that similar molecular mechanisms underlie the effect of expanded CAG repeats in different genes. The predicted Age of Onset (AO) for both HD, SCA1 and SCA3 (and 5 other CAG-repeat diseases) is based on the polyQ expansion, but the CAG/polyQ determines the AO only for 50% (see figure below). A large variety on AO is observed, especially for the most common range between 40 and 50 repeats11,12. Large differences in onset, especially in the range 40-50 CAGs not only imply that current individual predictions for AO are imprecise (affecting important life decisions that patients need to make and also hampering assessment of potential onset-delaying intervention) but also do offer optimism that (patient-related) factors exist that can delay the onset of disease.To address both items, we need to generate a better model, based on patient-derived cells that generates parameters that not only mirror the CAG-repeat length dependency of these diseases, but that also better predicts inter-patient variations in disease susceptibility and effectiveness of interventions. Hereto, we will use a staggered project design as explained in 5.1, in which we first will determine which cellular and molecular determinants (referred to as landscapes) in isogenic iPSC models are associated with increased CAG repeat lengths using deep-learning algorithms (DLA) (WP1). Hereto, we will use a well characterized control cell line in which we modify the CAG repeat length in the endogenous ataxin-1, Ataxin-3 and Huntingtin gene from wildtype Q repeats to intermediate to adult onset and juvenile polyQ repeats. We will next expand the model with cells from the 3 (SCA1, SCA3, and HD) existing and new cohorts of early-onset, adult-onset and late-onset/intermediate repeat patients for which, besides accurate AO information, also clinical parameters (MRI scans, liquor markers etc) will be (made) available. This will be used for validation and to fine-tune the molecular landscapes (again using DLA) towards the best prediction of individual patient related clinical markers and AO (WP3). The same models and (most relevant) landscapes will also be used for evaluations of novel mutant protein lowering strategies as will emerge from WP4.This overall development process of landscape prediction is an iterative process that involves (a) data processing (WP5) (b) unsupervised data exploration and dimensionality reduction to find patterns in data and create “labels” for similarity and (c) development of data supervised Deep Learning (DL) models for landscape prediction based on the labels from previous step. Each iteration starts with data that is generated and deployed according to FAIR principles, and the developed deep learning system will be instrumental to connect these WPs. Insights in algorithm sensitivity from the predictive models will form the basis for discussion with field experts on the distinction and phenotypic consequences. While full development of accurate diagnostics might go beyond the timespan of the 5 year project, ideally our final landscapes can be used for new genetic counselling: when somebody is positive for the gene, can we use his/her cells, feed it into the generated cell-based model and better predict the AO and severity? While this will answer questions from clinicians and patient communities, it will also generate new ones, which is why we will study the ethical implications of such improved diagnostics in advance (WP6).
Dit project exploreert de potentie van een eHealth-gebaseerde hoofdpijnapp ‘Hoofdpunt’ voor fysiotherapeuten en hoofdpijnverpleegkundigen die patiënten met hardnekkige hoofdpijn of ernstige migraine ondersteunen bij het (weer) optimaal kunnen functioneren in hun dagelijkse leven. Het concept is gebaseerd op een recent ontwikkelde interactieve app die fysiotherapeuten ondersteunt bij blended coaching van rugpijnpatiënten naar eigen regie over leven met lage rugpijn. De inhoud van deze app is gestoeld op een cognitieve gedragstherapeutische benadering (de Acceptance and Commitment Therapy: ACT) die de persoonlijke situatie, wensen en klachten van de patiënten als uitgangspunt neemt bij blended coaching naar eigen regie. Eerstelijns fysiotherapeuten en hoofdpijnverpleegkundigen van hoofdpijncentra willen het potentieel van bovenstaand concept exploreren voor hun ondersteuning van patiënten met hardnekkige hoofdpijn of ernstige migraine. Een optimale benutting van app-technologie in combinatie met het ACT-concept draagt naar verwachting bij aan hun mogelijkheden om patiënten inzicht te verschaffen in factoren die de ‘uitlokkers’ van hoofdpijn en de hevigheid van symptomen beïnvloeden. Het belang daarvan is gelegen in de forse aanslag van ernstige hoofdpijn op de kwaliteit van leven. Migraine staat bijvoorbeeld op de tweede plaats van de Global Burden of Disease Study. De met hoofdpijn en migraine gemoeide kosten zijn hoog als gevolg van veelvuldig medicatiegebruik en hoog ziekteverzuim. Inzicht in beïnvloedende factoren stelt patiënten in staat om eigen regie en verantwoordelijkheid te nemen over het dagelijkse functioneren en kan aanvallen van hoofdpijn/migraine voorkomen en/of verzachten. De verwachting is dat medicatiegebruik en ziekteverzuim daardoor zullen afnemen. In dit project exploreren wij aan de hand van actieonderzoek de wensen en mogelijkheden van de ‘Hoofdpunt-app’ bij zorgprofessionals en patiënten. Het project is een voorbereiding op de evaluatie van de doelmatigheid van deze ondersteuning bij hoofdpijninterventie.