BACKGROUND: Urinary and (peripheral and central) intravenous catheters are widely used in hospitalized patients. However, up to 56% of the catheters do not have an appropriate indication and some serious complications with the use of these catheters can occur. The main objective of our quality improvement project is to reduce the use of catheters without an appropriate indication by 25-50%, and to evaluate the affecting factors of our de-implementation strategy.METHODS: In a multicenter, prospective interrupted time series analysis, several interventions to avoid inappropriate use of catheters will be conducted in seven hospitals in the Netherlands. Firstly, we will define a list of appropriate indications for urinary and (peripheral and central) intravenous catheters, which will restrict the use of catheters and urge catheter removal when the indication is no longer appropriate. Secondly, after the baseline measurements, the intervention will take place, which consists of a kick-off meeting, including a competitive feedback report of the baseline measurements, and education of healthcare workers and patients. Additional strategies based on the baseline data and local conditions are optional. The primary endpoint is the percentage of catheters with an inappropriate indication on the day of data collection before and after the de-implementation strategy. Secondary endpoints are catheter-related infections or other complications, catheter re-insertion rate, length of hospital (and ICU) stay and mortality. In addition, the cost-effectiveness of the de-implementation strategy will be calculated.DISCUSSION: This study aims to reduce the use of urinary and intravenous catheters with an inappropriate indication, and as a result reduce the catheter-related complications. If (cost-) effective it provides a tool for a nationwide approach to reduce catheter-related infections and other complications.TRIAL REGISTRATION: Dutch trial registry: NTR6015 . Registered 9 August 2016.
DOCUMENT
Wind and solar power generation will continue to grow in the energy supply of the future, but its inherent variability (intermittency) requires appropriate energy systems for storing and using power. Storage of possibly temporary excess of power as methane from hydrogen gas and carbon dioxide is a promising option. With electrolysis hydrogen gas can be generated from (renewable) power. The combination of such hydrogen with carbon dioxide results in the energy carrier methane that can be handled well and may may serve as carbon feedstock of the future. Biogas from biomass delivers both methane and carbon dioxide. Anaerobic microorganisms can make additional methane from hydrogen and carbon dioxide in a biomethanation process that compares favourably with its chemical counterpart. Biomethanation for renewable power storage and use makes appropriate use of the existing infrastructure and knowledge base for natural gas. Addition of hydrogen to a dedicated biogas reactor after fermentation optimizes the biomethanation conditions and gives maximum flexibility. The low water solubility of hydrogen gas limits the methane production rate. The use of hollow fibers, nano-bubbles or better-tailored methane-forming microorganisms may overcome this bottleneck. Analyses of patent applications on biomethanation suggest a lot of freedom to operate. Assessment of biomethanation for economic feasibility and environmental value is extremely challenging and will require future data and experiences. Currently biomethanation is not yet economically feasible, but this may be different in the energy systems of the near future.
DOCUMENT
Thermal injury destroys the physical skin barrier that normally prevents invasion of microorganisms. This and concomitant depression of local and systemic host cellular and humoral immune responses are important factors that contribute to colonization and infection of the burn wound. One of the most common burn wound pathogens is Staphylococcus aureus. Staphylococcus aureus is both a human commensal and a frequent cause of infections leading to mild to life-threatening diseases. Despite a variety of infection control measures, for example patient cohorting and contact precaution at burn centres, S. aureus is still frequently encountered in burn wounds. Colonization with S. aureus has been associated with delayed wound healing, increased need for surgical interventions, and prolonged length of stay at burn centres. In this minireview, we focus on S. aureus nasal carriage in relation to S. aureus burn wound colonization and subsequent infection, and its impact on strategies for infection control. © 2009 Federation of European Microbiological Societies Published by Blackwell Publishing Ltd.
DOCUMENT