This article aims to uncover the processes of developing sustainable business models in innovation ecosystems. Innovation ecosystems with sustainability goals often consist of cross-sector partners and need to manage three tensions: the tension of value creation versus value capture, the tension of mutual value versus individual value, and the tension of gaining value versus losing value. The fact that these tensions affect all actors differently makes the process of developing a sustainable business model challenging. Based on a study of four sustainably innovative cross-sector collaborations, we propose that innovation ecosystems that develop a sustainable business model engage in a process of valuing value in which they search for a result that satisfies all actors. We find two different patterns of valuing value: collective orchestration and continuous search. We describe these patterns and the conditions that give rise to them. The identification of the two patterns opens up a research agenda that can shed further light on the conditions that need to be in place in order for an innovation ecosystem to develop effective sustainable business models. For practice, our findings show how cross-sector actors in innovation ecosystems may collaborate when developing a business model around emerging sustainability-oriented innovations.
Stakeholders and in particular customers are an important source for business model innovation. Especially for sustainable business models, stakeholder integration may radically change the business logic and help to revise the business model. In this process cognition plays a central role, challenging basic assumptions and changing the dominant logic. In this paper we explore how interactions with the network contribute to making a cognitive shift in development of a sustainable business model. We build on three cases and closely look at the commercialisation stage in which a change of cognition and redesign of the business model take place. Our findings show that network interaction changes the dominant logic in business model innovation in two ways: by triggering a cognitive shift and by contributing to business model redesign. Our main contribution is the conceptualization of three interrelated shaping processes: market approach shaping, product/service offering shaping and credibility shaping. They provide a fine-grained perspective on value creation through collaborative networks and add to the business model literature by providing a framework to study the role of networks and cognition in business model innovation. For practitioners the shaping processes may support business model redesign and building relationships to advance commercialisation of sustainability-oriented innovations.
We aim to understand how actors respond to field logic plurality and maintain legitimacy through business model innovation. Drawing on a longitudinal field study in the fashion industry, we traced how de novo and incumbent firms incorporate circular logics in business models (for sustainability) and uncover how the intersection between issue and exchange fields creates institutional complexity and experimental spaces for business model innovation. Our findings showed a shift in the discourse on circular logic that diverted attention and resources from materials innovation (e.g., recycling) to business model innovation (e.g., circular business models). By juxtaposing institutional complexity and external pressure to maintain legitimacy, we derived four strategic business model innovation responses—preserve, detach, integrate and extend—that illuminate how actors leverage shifting logics and innovate extant business models (for sustainability). We make novel contributions to the literature on organizational fields, business models for sustainability, and business model innovation.
The textile industry contributes over 8% of global greenhouse gas emissions and 20% of the world's wastewater, exceeding emissions from international flights and shipping combined. In the European Union, textile purchases in 2020 resulted in about 270 kg of CO₂ emissions per person, yet only 1% of used clothes are recycled into new garments.To address these challenges, the Textile Hub Groningen (THG) aims to assist small and medium-sized enterprises (SMEs) and stakeholders in forming circular textile value chains, hence reducing waste. Designing circular value chains is complex due to conflicting interests, lack of shared understanding, knowledge gaps regarding circular design principles and emerging technologies, and inadequate tools for collaborative business model development. The potential key stakeholders in the circular textile value chain find it hard to use existing tools and methods for designing these value chains as they are often abstract, not designed to be used in a collaborative setting that fosters collective sense making, immersive learning and experimentation. Consequently, the idea of circular textile value chain remains abstract and hard to realize.Serious games have been used in the past to learn about, simulate and experiment with complex adaptive systems. In this project we aim to answer the following research:How can serious games be leveraged to design circular textile value chains in the region?The expected outcomes of this project are: • Serious game: Facilitates the design of circular textile value chains• Academic Publication: Publish findings to contribute to scholarly discourse.• Future Funding Preparation: Mobilize partners and prepare proposals for follow-up funding to expand the approach to other domains.By leveraging game-based collaborative circular value chain and business model design experiences, this project aims to overcome barriers in designing viable circular value chains in the textile industry.
The textile industry is responsible for over 8% of global greenhouse gas emissions and 20% of the world’s wastewater, surpassing the emissions from international flights and shipping combined. In the European Union, textile purchases in 2020 led to around 270 kg of CO₂ emissions per person, yet only 1% of used clothing is recycled into new garments. The municipality of Groningen manages an estimated 950 kilotons of textile waste but is only able to collect, sort, and recycle 250 kilotons. To address these challenges, Textile Hub Groningen (THG) seeks to support small and medium-sized enterprises (SMEs) and stakeholders in creating circular textile value chains. However, designing circular value chains presents challenges, including conflicting interests, knowledge gaps on circular design principles, and inadequate tools for collaborative business model development. Potential stakeholders often find current tools too abstract and not conducive to collaboration, learning, or experimentation. As a result, circular value chains remain difficult to achieve from the perspective of individual stakeholders. Serious games have been employed to simulate and experiment with complex adaptive systems , . Research shows that well-designed playful learning enhances both learning and motivation, particularly when social elements are integrated . This project aims to answer the following research question: How can serious games be leveraged to design circular textile value chains in the region? The expected outcomes are: 1. Serious Game: Design, test, and deliver a serious game to facilitate the joint design of circular textile value chains. 2. Publications: Extract insights from the game’s design and evaluation, contributing to both academic and practical discussions. 3. Consortium for Follow-up: Mobilize partners and secure funding for future projects in related fields. Through game-based collaborative circular value chain and business model design experiences, this project overcomes barriers in designing viable circular value chains in the textile industry
Introduction The research group Biobased Resources & Energy (BRE) of Avans focusses on recovery of valuable building blocks from low-value solid and liquid residual streams from agriculture, households and industries. For the valorisation of these residual streams, BRE looks into different biological, chemical and mechanical processes. One of the main issues in the utilisation of residual streams is economic feasibility and the recovery of multiple resources from one residual stream. Using membrane technologies in combination with biological, chemical and/or mechanical processes could offer great opportunities. Central Research Question What is the applicability of membrane technologies for valorisation of different residual streams and is it possible to integrate membrane technology in current and new biorefining projects of research group BRE: Set-up In order to reach the goal of this postdoc, 4 research questions will be answered using literature search, experimentation and modelling: 1) What membrane methods are currently (commercially) available to enhance the results of current projects in research group BRE? 2) What are the essential technical parameters for membrane separation and how can these be optimized? 3) What is the economic impact of using membrane technology in recovery of valuable building blocks from residual streams? 4) What are the effects of using membranes instead of or complementary to currently used methods on the sustainability of valorisation of residual streams? Cooperation The postdoc and the research group BRE want to extend the contact and research cooperation with (regional) businesses and (applied) universities and support and facilitate the introduction and further development of membrane technologies in the curriculum of different Avans study programmes. This will be done via internships, minor projects (together with businesses) and development of study material for courses and trainings.