The purpose of this paper is to investigate the future of business events in the “phygital” age from the viewpoint of purposes and formats, delivering a generative tool for adoption. The approach is based on constructivist epistemology. The topic was approached from the viewpoint of foresight and Design Research, firstly by designing and performing three cycles of qualitative interviews with (a) thought leaders and senior industry experts (setting the drivers for matrix tool development), for a total of 10 respondents within a gender-balanced panel (50% female, 50% male), covering Western, Asian, Arab, and North American regions. A Machine Learning-enabled scan was performed for triangulation purposes. Secondly, a generative matrix tool was designed and tested by (b) senior to midweight Design Thinkers and (c) junior to midweight emerging talents, for a total of 22 respondents. Key findings pertain to current trends and future developments in business event design and management from a “phygital” perspective, transferred into a generative matrix tool.
LINK
Like a marker pen on a map, the Covid-19 pandemic drastically highlighted the persisting existence of borders that used to play an ever decreasing role in people´s perception and behavior over the last decades. Yes, inner European borders are open in normal times. Yes, people, goods, services and ideas are crossing the border between Germany and the Netherlands freely. Yet we see that the border can turn into a barrier again quickly and effectively and it does so in many dimensions, some of them being not easily visible. Barriers hinder growth, development and exchange and in spite of our progress in creating a borderless Europe, borders still create barriers in many domains. Differing labor law, social security and tax systems, heterogeneous education models, small and big cultural differences, language barriers and more can impose severe limitations on people and businesses as they cross the border to travel, shop, work, hire, produce, buy, sell, study and research. Borders are of all times and will therefore always exist. But as they did so for a long time, huge opportunities can be found in overcoming the barriers they create. The border must not necessarily be a dividing line between two systems. It has the potential to become a center of growth and progress that build on joint efforts, cross-border cooperation, mutual learning and healthy competition. Developing this inherent potential of border regions asks for politics, businesses and research & education on both sides of the border to work together. The research group Cross-Border Business Development at Fontys University of Applied Science in Venlo conducts applied research on the impact of the national border on people and businesses in the Dutch-German border area. Students, employees, border commuters, entrepreneurs and employers all face opportunities as well as challenges due to the border. In collaboration with these stakeholders, the research chair aims to create knowledge and provide solutions towards a Dutch-German labor market, an innovative Dutch-German borderland and a futureproof Cross-Border economic ecosystem. This collection is not about the borderland in times of COVID-19. Giving meaning to the borderland is an ongoing process that started long before the pandemic and will continue far beyond. The links that have been established across the border and those that will in the future are multifaceted and so are the topics in this collection. Vincent Pijnenburg outlines a broader and introductory perspective on the dynamics in the Dutch-German borderland.. Carla Arts observes shopping behavior of cross-border consumers in the Euregion Rhine-Meuse-North. Jan Lucas explores the interdependencies of the Dutch and German economies. Jean Louis Steevensz presents a cross-border co-creation servitization project between a Dutch supplier and a German customer. Vincent Pijnenburg and Patrick Szillat analyze the exitence of clusters in the Dutch-German borderland. Christina Masch and Janina Ulrich provide research on students job search preferences with a focus on the cross-border labor market. Sonja Floto-Stammen and Natalia Naranjo-Guevara contribute a study of the market for insect-based food in Germany and the Netherlands. Niklas Meisel investigates the differences in the German and Dutch response to the Covid-19 crisis. Finally, Tolga Yildiz and Patrick Szillat show differences in product-orientation and customer-orientation between Dutch and German small and medium sized companies. This collection shows how rich and different the links across the border are and how manifold the perspectives and fields for a cross-border approach to regional development can be. This publication is as well an invitation. Grasping the opportunities that the border location entails requires cooperation across professional fields and scientific disciplines, between politics, business and researchers. It needs the contact with and the contribution of the people in the region. So do what we strive for with our cross-border research agenda: connect!
Purpose – The purpose of this paper is to explore the characteristics of talent in relation to international business to facilitate selection and development of talent in human resources (HR) and human resource development (HRD).Design/methodology/approach – A mixed method design was used: focus groups with business professionals to identify the characteristics of highly talented international business professionals (HTIBP), resulting in a concept profile; Delphi study for validation; systematic comparison of the opencoding results to existing literature to identify characteristics of talent.Findings – A specific and concise profile of HTIBP has been developed. This profile has five domains: achieving results; communicating; innovating; self-reflecting; seeing patterns and interrelationships in a global context. From literature cross-referencing, we have identified innovating, being creative andhaving a drive to achieve results are most distinguishing for HTIBP.Practical implications – The paper facilitates an ongoing discussion about what constitutes talent, and offers new perspectives for companies to consider when selecting and developing talent.Originality/value – The conceptual contribution of the paper offers a fresh and practical empirical perspective on what talent entails.
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
Sea Lettuce, Ulva spp. is a versatile and edible green seaweed. Ulva spp is high in protein, carbohydrates and lipids (respectively 7%-33%; 33%-62% and 1%-3% on dry weight base [1, 2]) but variation in these components is high. Ulva has the potential to produce up to 45 tons DM/ha/year but 15 tons DM/ha/year is more realistic.[3, 4] This makes Ulva a possible valuable resource for food and other applications. Sea Lettuce is either harvested wild or cultivated in onshore land based aquaculture systems. Ulva onshore aquaculture is at present implemented only on a few locations in Europe on commercial scale because of limited knowledge about Ulva biology and its optimal cultivation systems but also because of its unfamiliarity to businesses and consumers. The objective of this project is to improve Ulva onshore aquaculture by selecting Ulva seed material, optimizing growth and biomass production by applying ecophysiological strategies for nutrient, temperature, microbiome and light management, by optimizing pond systems eg. attached versus free floating production and eventually protoype product development for feed, food and cosmetics.
The postdoc candidate, Giuliana Scuderi, will strengthen the connection between the research group Biobased Buildings (BB), (collaboration between Avans University of Applied Sciences and HZ University of Applied Sciences (HZ), and the Civil Engineering bachelor programme (CE) of HZ. The proposed research aims at deepening the knowledge about the mechanical properties of biobased materials for the application in the structural and infrastructural sectors. The research is relevant for the professional field, which is looking for safe and sustainable alternatives to traditional building materials (such as lignin asphalt, biobased panels for bridge constructions, etc.). The study of the mechanical behaviour of traditional materials (such as concrete and steel) is already part of the CE curriculum, but the ambition of this postdoc is that also BB principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop a biobased material science line and will facilitate applied research experiences for students, in collaboration with engineering and architectural companies, material producers and governmental bodies. Consequently, a new generation of environmentally sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment, with possible connections with other fields of study, such as Architecture, Engineering, Economics and Chemistry. The project is also relevant for the National Science Agenda (NWA), being a crossover between the routes “Materialen – Made in Holland” and “Circulaire economie en grondstoffenefficiëntie”. The final products will be ready-to-use guidelines for the applications of biobased materials, a portfolio of applications and examples, and a new continuous learning line about biobased material science within the CE curriculum. The postdoc will be mentored and supervised by the Lector of the research group and by the study programme coordinator. The personnel policy and job function series of HZ facilitates the development opportunity.