Business decisions and business logic are an important part of an organization’s daily activities. In the not so near past they were modelled as integrative part of business processes, however, during the last years, they are managed as a separate entity. Still, decisions and underlying business logic often remain a black box. Therefore, the call for transparency increases. Current theory does not provide a measurable and quantitative way to measure transparency for business decisions. This paper extends the understanding of different views on transparency with regards to business decisions and underlying business logic and presents a framework including Key Transparency Indicators (KTI) to measure the transparency of business decisions and business logic. The framework is validated by means of an experiment using case study data. Results show that the framework and KTI’s are useful to measure transparency. Further research will focus on further refinement of the measurements as well as further validation of the current measurements.
DOCUMENT
We aim to understand how actors respond to field logic plurality and maintain legitimacy through business model innovation. Drawing on a longitudinal field study in the fashion industry, we traced how de novo and incumbent firms incorporate circular logics in business models (for sustainability) and uncover how the intersection between issue and exchange fields creates institutional complexity and experimental spaces for business model innovation. Our findings showed a shift in the discourse on circular logic that diverted attention and resources from materials innovation (e.g., recycling) to business model innovation (e.g., circular business models). By juxtaposing institutional complexity and external pressure to maintain legitimacy, we derived four strategic business model innovation responses—preserve, detach, integrate and extend—that illuminate how actors leverage shifting logics and innovate extant business models (for sustainability). We make novel contributions to the literature on organizational fields, business models for sustainability, and business model innovation.
DOCUMENT
This paper seeks to make a contribution to business model experimentation for sustainability by putting forward a relatively simple tool. This tool calculates the financial and sustainability impact based on the SDG’s of a newly proposed business model (BM). BM experimentation is described by Bocken et al. (2019) as an iterative-multi-actor experimentation process. At the final experimentation phases some form of sustainability measurement will be necessary in order to validate if the new proposed business model will be achieving the aims set in the project. Despite the plethora of tools, research indicates that tools that fit needs and expectations are scarce, lack the specific focus on sustainable BM innovation, or may be too complex and demanding in terms of time commitment (Bocken, Strupeit, Whalen, & Nußholz, 2019a). In this abstract we address this gap, or current inability of calculating the financial and sustainability effect of a proposed sustainable BM in an integrated, time effective manner. By offering a practical tool that allows for this calculation, we aim to answer the research question; “How can the expected financial and sustainability impact of BMs be forecasted within the framework of BM experimentation?
DOCUMENT
The focus of this project is on improving the resilience of hospitality Small and Medium Enterprises (SMEs) by enabling them to take advantage of digitalization tools and data analytics in particular. Hospitality SMEs play an important role in their local community but are vulnerable to shifts in demand. Due to a lack of resources (time, finance, and sometimes knowledge), they do not have sufficient access to data analytics tools that are typically available to larger organizations. The purpose of this project is therefore to develop a prototype infrastructure or ecosystem showcasing how Dutch hospitality SMEs can develop their data analytic capability in such a way that they increase their resilience to shifts in demand. The one year exploration period will be used to assess the feasibility of such an infrastructure and will address technological aspects (e.g. kind of technological platform), process aspects (e.g. prerequisites for collaboration such as confidentiality and safety of data), knowledge aspects (e.g. what knowledge of data analytics do SMEs need and through what medium), and organizational aspects (what kind of cooperation form is necessary and how should it be financed).Societal issueIn the Netherlands, hospitality SMEs such as hotels play an important role in local communities, providing employment opportunities, supporting financially or otherwise local social activities and sports teams (Panteia, 2023). Nevertheless, due to their high fixed cost / low variable business model, hospitality SMEs are vulnerable to shifts in consumer demand (Kokkinou, Mitas, et al., 2023; Koninklijke Horeca Nederland, 2023). This risk could be partially mitigated by using data analytics, to gain visibility over demand, and make data-driven decisions regarding allocation of marketing resources, pricing, procurement, etc…. However, this requires investments in technology, processes, and training that are oftentimes (financially) inaccessible to these small SMEs.Benefit for societyThe proposed study touches upon several key enabling technologies First, key enabling technology participation and co-creation lies at the center of this proposal. The premise is that regional hospitality SMEs can achieve more by combining their knowledge and resources. The proposed project therefore aims to give diverse stakeholders the means and opportunity to collaborate, learn from each other, and work together on a prototype collaboration. The proposed study thereby also contributes to developing knowledge with and for entrepreneurs and to digitalization of the tourism and hospitality sector.Collaborative partnersHZ University of Applied Sciences, Hotel Hulst, Hotel/Restaurant de Belgische Loodsensociëteit, Hotel Zilt, DM Hotels, Hotel Charley's, Juyo Analytics, Impuls Zeeland.
Renewable energy, particularly offshore wind turbines, plays a crucial role in the Netherlands' and EU energy-transition-strategies under the EU Green Deal. The Dutch government aims to establish 75GW offshore wind capacity by 2050. However, the sector faces human and technological challenges, including a shortage of maintenance personnel, limited operational windows due to weather, and complex, costly logistics with minimal error tolerance. Cutting-edge robotic technologies, especially intelligent drones, offer solutions to these challenges. Smaller drones have gained prominence through applications identifying, detecting, or applying tools to various issues. Interest is growing in collaborative drones with high adaptability, safety, and cost-effectiveness. The central practical question from network partners and other stakeholders is: “How can we deploy multiple cooperative drones for maintenance of wind turbines, enhancing productivity and supporting a viable business model for related services?” This is reflected in the main research question: "Which drone technologies need to be developed to enable collaborative maintenance of offshore wind turbines using multiple smaller drones, and how can an innovative business model be established for these services? In collaboration with public and private partners, Saxion, Hanze, and RUG will research the development of these collaborative drones and investigate the technology’s potential. The research follows a Design Science Research methodology, emphasizing solution-oriented applied research, iterative development, and rigorous evaluation. Key technological building blocks to be developed: • Morphing drones, • Intelligent mechatronic tools, • Learning-based adaptive interaction controllers and collaborations. To facilitate the sustainable industrial uptake of the developed technologies, appropriate sustainable business models for these technologies and services will be explored. The project will benefit partners by enhancing their operations and business. It will contribute to renewing higher professional education and may lead to the creation of spin-offs/spinouts which bring this innovative technology to the society, reinforcing the Netherlands' position as a leading knowledge economy.
Sea Lettuce, Ulva spp. is a versatile and edible green seaweed. Ulva spp is high in protein, carbohydrates and lipids (respectively 7%-33%; 33%-62% and 1%-3% on dry weight base [1, 2]) but variation in these components is high. Ulva has the potential to produce up to 45 tons DM/ha/year but 15 tons DM/ha/year is more realistic.[3, 4] This makes Ulva a possible valuable resource for food and other applications. Sea Lettuce is either harvested wild or cultivated in onshore land based aquaculture systems. Ulva onshore aquaculture is at present implemented only on a few locations in Europe on commercial scale because of limited knowledge about Ulva biology and its optimal cultivation systems but also because of its unfamiliarity to businesses and consumers. The objective of this project is to improve Ulva onshore aquaculture by selecting Ulva seed material, optimizing growth and biomass production by applying ecophysiological strategies for nutrient, temperature, microbiome and light management, by optimizing pond systems eg. attached versus free floating production and eventually protoype product development for feed, food and cosmetics.