Op verzoek van Jelle Scheurleer: Purpose: To investigate the accuracy of dose calculation on cone beam CT (CBCT) data sets after HU-RED calibration and validation in phantom studies and clinical patients. Material and methods: Calibration of HU-RED curves for kV-CBCT were generated for three clinical protocols (H&N, thorax and pelvis) by using a Gammex RMI phantom with human tissue equivalent inserts and additional perspex blocks to account for patient scatter. Two calibration curves per clinical protocol were defined, one for the Varian Truebeam 2.0 and another for the OBI systems (Varian, Palo Ato). Differences in HU values with respect to the CT-calibration curve were evaluated for all the inserts. Four radiotherapy plans (breast, prostate, H&N and lung) were produced on an anthropomorphic phantom (Alderson) to evaluate dose differences on the kV-CBCT with the new calibration curves with respect to the CT based dose calculation. Dose differences were evaluated according to the D2%, D98% and Dmean metrics extracted from the DVHs of the plans and - evaluation (2%, 1mm) on the three planes at the isocenter for all plans. Clinical evaluation was performed on 5 patients and dose differences were evaluated as in the phantom study.
DOCUMENT
Calibration of spectral imaging instruments is a prerequisite for many applications, in particular in the field of Earth observation. In this contribution we will present a novel traceability route to celebrate spectral imaging instruments, based on tunable radiance source that is referenced to a primary detector standard.
DOCUMENT
We have developed an SI-traceable narrow-band tunable radiance source based on an optical parametric oscillator (OPO) and an integrating sphere for the calibration of spectroradiometers. The source is calibrated with a reference detector over the ultraviolet/visible spectral range with an uncertainty of <1%. As a case study, a CubeSat spectroradiometer has been calibrated for radiance over its operating range from 370 nm to 480 nm. To validate the results, the instrument has also been calibrated with a traditional setup based on a diffuser and an FEL lamp. Both routes show good agreement within the combined measurement uncertainty. The OPO-based approach could be an interesting alternative to the traditional method, not only because of reduced measurement uncertainty, but also because it directly allows for wavelength calibration and characterization of the instrumental spectral response function and stray light effects, which could reduce calibration time and cost.
DOCUMENT
This paper describes a calibration method for inertial and magnetic sensors using a batched optimization procedure. Well estab- lished sensor, motion and constraint models are applied which include sensor gains, biases, misalignments and inter-triad misalignments. For the magnetometer, hard and soft iron model parameters and local dip- angle are embodied in the framework as well. The method does not require any additional equipment, is minimal restrictive with respect to the required movements, and can be performed within one minute. Our approach is applicable for both single and multi Inertial Measurement Units (IMU) and leverages from the relative pose between rigidly con- nected IMU’s. We demonstrated that our approach resulted in improved dead reckoning estimates and showed good agreements with an optical reference system for both position and orientation estimates.
MULTIFILE
From diagnosis to patient scheduling, AI is increasingly being considered across different clinical applications. Despite increasingly powerful clinical AI, uptake into actual clinical workflows remains limited. One of the major challenges is developing appropriate trust with clinicians. In this paper, we investigate trust in clinical AI in a wider perspective beyond user interactions with the AI. We offer several points in the clinical AI development, usage, and monitoring process that can have a significant impact on trust. We argue that the calibration of trust in AI should go beyond explainable AI and focus on the entire process of clinical AI deployment. We illustrate our argument with case studies from practitioners implementing clinical AI in practice to show how trust can be affected by different stages in the deployment cycle.
DOCUMENT
Risk assessment plays an important role in forensic mental health care. The way the conclusions of those risk assessments are communicated varies considerably across instruments. In an effort to make them more comparable, Hanson, R. K., Bourgon, G., McGrath, R., Kroner, D. D., Amora, D. A., Thomas, S. S., & Tavarez, L. P. [2017. A five-level risk and needs system: Maximizing assessment results in corrections through the development of a common language. The Council of State Governments Justice Center. https:// csgjusticecenter.org/wp-content/uploads/2017/01/A-Five-Level-Risk-and-Needs-system_Report.pdf] developed the Five-Level Risk and Needs System, placing the conclusions of different instruments along five theoretically meaningful levels. The current study explores a Five-Level Risk and Needs system for violent recidivism to which the numerical codings of the HCR-20 Version 2 and its successor, the HCR-20V3 are calibrated, using a combined sample from six previous studies for the HCR-20 Version 2 (n = 411 males with a violent index offence) and a pilot sample for the HCR-20V3 (n = 66 males with a violent index offence). Baselines for the five levels were defined by a combination of theoretical (e.g. expert meetings) and empirical (e.g. literature review) considerations. The calibration of the HCR-20 Version 2 was able to detect four levels, from a combined level I/II to an adjusted level V. The provisional calibration of the HCR-20V3 showed a substantial overlap with the HCR-20 Version 2, with each level boundary having a 2-point difference. Implications for practice and future research are discussed.
DOCUMENT
Background: Early identification of older cardiac patients at high risk of readmission or mortality facilitates targeted deployment of preventive interventions. In the Netherlands, the frailty tool of the Dutch Safety Management System (DSMS-tool) consists of (the risk of) delirium, falling, functional impairment, and malnutrition and is currently used in all older hospitalised patients. However, its predictive performance in older cardiac patients is unknown. Aim: To estimate the performance of the DSMS-tool alone and combined with other predictors in predicting hospital readmission or mortality within 6 months in acutely hospitalised older cardiac patients. Methods: An individual patient data meta-analysis was performed on 529 acutely hospitalised cardiac patients ≥70 years from four prospective cohorts. Missing values for predictor and outcome variables were multiply imputed. We explored discrimination and calibration of: (1) the DSMS-tool alone; (2) the four components of the DSMS-tool and adding easily obtainable clinical predictors; (3) the four components of the DSMS-tool and more difficult to obtain predictors. Predictors in model 2 and 3 were selected using backward selection using a threshold of p = 0.157. We used shrunk c-statistics, calibration plots, regression slopes and Hosmer-Lemeshow p-values (PHL) to describe predictive performance in terms of discrimination and calibration. Results: The population mean age was 82 years, 52% were males and 51% were admitted for heart failure. DSMS-tool was positive in 45% for delirium, 41% for falling, 37% for functional impairments and 29% for malnutrition. The incidence of hospital readmission or mortality gradually increased from 37 to 60% with increasing DSMS scores. Overall, the DSMS-tool discriminated limited (c-statistic 0.61, 95% 0.56-0.66). The final model included the DSMS-tool, diagnosis at admission and Charlson Comorbidity Index and had a c-statistic of 0.69 (95% 0.63-0.73; PHL was 0.658). Discussion: The DSMS-tool alone has limited capacity to accurately estimate the risk of readmission or mortality in hospitalised older cardiac patients. Adding disease-specific risk factor information to the DSMS-tool resulted in a moderately performing model. To optimise the early identification of older hospitalised cardiac patients at high risk, the combination of geriatric and disease-specific predictors should be further explored.
DOCUMENT
Description of a new hand/palm-held computerized 3D force measuring system. The system is built for interface (direct) measurement of 3D manual contact force with real-time data presentation. Static calibration was performed of the 3D force sensor with variable preloads to study their effect as well of the prototype system adapted for clinical manual examination and treatment. The new system enables, for the first time, recording and presenting of 3D manual contact forces at the patient-practitioner interface. 3D direct manual contact force measures have the potential to give a more complete and differentiated characterization of patient and practitioner forces than 1D forces. Clinical validity of the prototype system will have to be investigated, and for studying specific clinical manual handling techniques, obvious limitations require further development.
DOCUMENT
Objective To develop and internally validate a prognostic model to predict chronic pain after a new episode of acute or subacute non-specific idiopathic, non-traumatic neck pain in patients presenting to physiotherapy primary care, emphasising modifiable biomedical, psychological and social factors. Design A prospective cohort study with a 6-month follow-up between January 2020 and March 2023. Setting 30 physiotherapy primary care practices. Participants Patients with a new presentation of non-specific idiopathic, non-traumatic neck pain, with a duration lasting no longer than 12 weeks from onset. Baseline measures Candidate prognostic variables collected from participants included age and sex, neck pain symptoms, work-related factors, general factors, psychological and behavioural factors and the remaining factors: therapeutic relation and healthcare provider attitude. Outcome measures Pain intensity at 6 weeks, 3 months and 6 months on a Numeric Pain Rating Scale (NPRS) after inclusion. An NPRS score of ≥3 at each time point was used to define chronic neck pain. Results 62 (10%) of the 603 participants developed chronic neck pain. The prognostic factors in the final model were sex, pain intensity, reported pain in different body regions, headache since and before the neck pain, posture during work, employment status, illness beliefs about pain identity and recovery, treatment beliefs, distress and self-efficacy. The model demonstrated an optimism-corrected area under the curve of 0.83 and a corrected R2 of 0.24. Calibration was deemed acceptable to good, as indicated by the calibration curve. The Hosmer–Lemeshow test yielded a p-value of 0.7167, indicating a good model fit. Conclusion This model has the potential to obtain a valid prognosis for developing chronic pain after a new episode of acute and subacute non-specific idiopathic, non-traumatic neck pain. It includes mostly potentially modifiable factors for physiotherapy practice. External validation of this model is recommended.
LINK
We assessed how golfers cope with the commonly observed systematic overshoot errors in the perception of the direction between the ball and the hole. Experiments 1 and 2, in which participants were required to rotate a pointer such that it pointed to the center of the hole, showed that errors in perceived direction (in degrees of deviation from the perfect aiming line) are destroyed when the head is constrained to move within a plane perpendicular to the green. Experiment 3 compared the errors in perceived direction and putting errors of novice and skilled players. Unlike the perceived direction, putting accuracy (in degrees of deviation from the perfect aiming line) was not affected by head position. Novices did show a rightward putting error, while skilled players did not. We argue that the skill-related differences in putting accuracy reflect a process of recalibration. Implications for aiming in golf are discussed.
DOCUMENT