Wind and solar power generation will continue to grow in the energy supply of the future, but its inherent variability (intermittency) requires appropriate energy systems for storing and using power. Storage of possibly temporary excess of power as methane from hydrogen gas and carbon dioxide is a promising option. With electrolysis hydrogen gas can be generated from (renewable) power. The combination of such hydrogen with carbon dioxide results in the energy carrier methane that can be handled well and may may serve as carbon feedstock of the future. Biogas from biomass delivers both methane and carbon dioxide. Anaerobic microorganisms can make additional methane from hydrogen and carbon dioxide in a biomethanation process that compares favourably with its chemical counterpart. Biomethanation for renewable power storage and use makes appropriate use of the existing infrastructure and knowledge base for natural gas. Addition of hydrogen to a dedicated biogas reactor after fermentation optimizes the biomethanation conditions and gives maximum flexibility. The low water solubility of hydrogen gas limits the methane production rate. The use of hollow fibers, nano-bubbles or better-tailored methane-forming microorganisms may overcome this bottleneck. Analyses of patent applications on biomethanation suggest a lot of freedom to operate. Assessment of biomethanation for economic feasibility and environmental value is extremely challenging and will require future data and experiences. Currently biomethanation is not yet economically feasible, but this may be different in the energy systems of the near future.
Tourism is on course to thwart humanity’s efforts to reach a zero carbon economy because of its high growth rates and carbon intensity. To get out of its carbon predicament, the tourism sector needs professionals with carbon literacy and carbon capability. Providing future professionals in the full spectrum of tourism-related study programmes with the necessary knowledge and skills is essential. This article reports on ten years of experience at a BSc tourism programme with a carbon footprint exercise in which students calculate the carbon footprint of their latest holiday, compare their results with others and reflect on options to reduce emissions. Before they start, the students are provided with a handout with emission factors, a brief introduction and a sample calculation. The carbon footprints usually differ by a factor of 20 to 30 between the highest and lowest. Distance, transport mode and length of stay are almost automatically identified as the main causes, and as the main keys for drastically reducing emissions. The link to the students’ own experience makes the exercise effective, the group comparison makes it fun. As the exercise requires no prior knowledge and is suitable for almost any group size, it can be integrated into almost any tourism-related study programme.
The carbon footprint for the downstream dairy value chain, milk collection and dairy processing plants was estimated through the contribution of emissions per unit of collected and processed milk, whereas that for the upstream dairy value chain, input supply and production was not considered. A survey was conducted among 28 milk collectors and four employees of processing plants. Two clusters were established: small- and large-scale milk collectors. The means of carbon dioxide equivalent per kilogramme (CO2-eq/kg) milk were compared between clusters by using independent sample t-test. The average utilisation efficiency of milk cooling refrigerators for small- and large-scale collectors was 48.5 and 9.3%, respectively. Milk collectors released carbon footprint from their collection, cooling and distribution practices. The mean kg CO2-eq/kg milk was 0.023 for large-scale collectors and 0.106 for small-scale collectors (p < 0.05). Milk processors contributed on average 0.37 kg CO2-eq/kg milk from fuel (diesel and petrol) and 0.055 from electricity. Almi fresh milk and milk products processing centre emitted the highest carbon footprint (0.212 kg CO2-eq/kg milk), mainly because of fuel use. Generally, in Ziway-Hawassa milk shed small-scale collectors released higher CO2-eq/kg milk than large-scale collectors.
MULTIFILE
Buildings are responsible for approximately 40% of energy consumption and 36% of carbon dioxide (CO2) emissions in the EU, and the largest energy consumer in Europe (https://ec.europa.eu/energy). Recent research shows that more than 2/3 of all CO2 is emitted during the building process whereas less than 1/3 is emitted during use. Cement is the source of about 8% of the world's CO2 emissions and innovation to create a distributive change in building practices is urgently needed, according to Chatham House report (Lehne et al 2018). Therefore new sustainable materials must be developed to replace concrete and fossil based building materials. Lightweight biobased biocomposites are good candidates for claddings and many other non-bearing building structures. Biocarbon, also commonly known as Biochar, is a high-carbon, fine-grained solid that is produced through pyrolysis processes and currently mainly used for energy. Recently biocarbon has also gained attention for its potential value with in industrial applications such as composites (Giorcellia et al, 2018; Piri et.al, 2018). Addition of biocarbon in the biocomposites is likely to increase the UV-resistance and fire resistance of the materials and decrease hydrophilic nature of composites. Using biocarbon in polymer composites is also interesting because of its relatively low specific weight that will result to lighter composite materials. In this Building Light project the SMEs Torrgas and NPSP will collaborate with and Avans/CoE BBE in a feasibility study on the use of biocarbon in a NPSP biocomposite. The physicochemical properties and moisture absorption of the composites with biocarbon filler will be compared to the biocomposite obtained with the currently used calcium carbonate filler. These novel biocarbon-biocomposites are anticipated to have higher stability and lighter weight, hence resulting to a new, exciting building materials that will create new business opportunities for both of the SME partners.
The carbon dioxide emissions of aviation play an important role in many studies and databases. But unfortunately, a detailed and reliable overview of emission factors, and algorithms to calculate these based on factors like seating class, airline type, and aircraft type, did not exist for the Dutch aviation sector. This study calculated such emissions for a sample of over 5000 international flights in 2019 from the 5 Dutch main airports. The data about the flights were gathered from FlightRadar and enriched with seating capacities specific to the airline performing ten flights. in this way, emissions could be assigned to each of the four seating classes (economy, economy-plus, business and first). By aggregating the data to airline types and distance of the flight, algorithms were developed that help researchers and policy-makers to calculate the emissions. Societal IssueThe carbon footprint of Dutch aviation is about 10% of the total footprint. To prevent the world to exceed 1.5 degrees C and enter 'dangerous climate change', emissions need to decline to zero before 2050. This study helps assess and understand current aviation emissions from Dutch airports.Benefit to societyThe results were an update of emissions factors as used by the funding organisation, MilieuCentraal, and the official emission factors list (https://www.co2emissiefactoren.nl/lijst-emissiefactoren/).
Client: European Institute of Innovation and Technology (EIT) The European Institute of Innovation & Technology, a body of the European Union founded to increase European sustainable growth and competitiveness, has set up a number of Knowledge and Innovation Communities (KIC). One of these Communities is on climate change (Climate-KIC). In 2013, Climate-KIC in the Netherlands approved funding for the IMPACT project (IMPlementation & Adoption of Carbon footprint in Tourism travel packages). This ‘pathfinder’ project aimed to assess the viability of and market for a comprehensive carbon calculator. Such a calculator would enable enterprises in the wider travel industry to determine the carbon dioxide emissions, the main cause for climate change, of tourism products and include ‘carbon management’ in their overall policy and strategy. It is generally expected the cost for fuel and carbon will significantly rise in the near en medium future. The calculator will not only cover flights, but also other transport modes, local tourism activities and accommodations. When this pathfinder project finds interest for carbon management within the sector, we aim to start a much larger follow-up project that will deliver the calculator and tools. The IMPACT project was coordinated by the research institute Alterra Wagenigen UR, the Netherlands. Partners were: - Schiphol Airport Group, Amsterdam, The Netherlands- Technical University Berlin, Germany- TEC Conseil, Marseille, France- TUI Netherlands, Rijswijk, The Netherlands- NHTV Breda University for Applied Sciences, The NetherlandsThe project ran from September 2013 to February 2014.