OBJECTIVE: To examine how a healthy lifestyle is related to life expectancy that is free from major chronic diseases.DESIGN: Prospective cohort study.SETTING AND PARTICIPANTS: The Nurses' Health Study (1980-2014; n=73 196) and the Health Professionals Follow-Up Study (1986-2014; n=38 366).MAIN EXPOSURES: Five low risk lifestyle factors: never smoking, body mass index 18.5-24.9, moderate to vigorous physical activity (≥30 minutes/day), moderate alcohol intake (women: 5-15 g/day; men 5-30 g/day), and a higher diet quality score (upper 40%).MAIN OUTCOME: Life expectancy free of diabetes, cardiovascular diseases, and cancer.RESULTS: The life expectancy free of diabetes, cardiovascular diseases, and cancer at age 50 was 23.7 years (95% confidence interval 22.6 to 24.7) for women who adopted no low risk lifestyle factors, in contrast to 34.4 years (33.1 to 35.5) for women who adopted four or five low risk factors. At age 50, the life expectancy free of any of these chronic diseases was 23.5 (22.3 to 24.7) years among men who adopted no low risk lifestyle factors and 31.1 (29.5 to 32.5) years in men who adopted four or five low risk lifestyle factors. For current male smokers who smoked heavily (≥15 cigarettes/day) or obese men and women (body mass index ≥30), their disease-free life expectancies accounted for the lowest proportion (≤75%) of total life expectancy at age 50.CONCLUSION: Adherence to a healthy lifestyle at mid-life is associated with a longer life expectancy free of major chronic diseases.
DOCUMENT
The consequences of cardiovascular diseases are substantial and include increasing numbers of morbidity and mortality. With a population getting more and more inactive and having a sedentary lifestyle, the risk for cardiovascular disease and type 2 diabetes rises. This dissertation reports on people with one or more cardiovascular risk factor(s) and who are having an inactive lifestyle, and how healthcare professionals can encourage these people at risk to become and stay physically active in a way that cardiovascular fitness is improved. The assumption is that if an intervention can reduce the prevalence of risk factors, it can also reduce the prevalence of disease. When cardiovascular fitness improves and a person is capable of keeping a physically active lifestyle, levels and number of cardiovascular risk factors can decrease in a population.
DOCUMENT
Children with Marfan (MFS) and Loeys-Dietz syndrome (LDS) report limitations in physical activities, sports, school, leisure, and work participation in daily life. This observational, cross-sectional, multicenter study explores associations between physical fitness and cardiovascular parameters, systemic manifestations, fatigue, and pain in children with MFS and LDS. Forty-two participants, aged 6–18 years (mean (SD) 11.5(3.7)), diagnosed with MFS (n = 36) or LDS (n = 6), were enrolled. Physical fitness was evaluated using the Fitkids Treadmill Test’s time to exhaustion (TTE) outcome measure. Cardiovascular parameters (e.g., echocardiographic parameters, aortic surgery, cardiovascular medication) and systemic manifestations (systemic score of the revised Ghent criteria) were collected. Pain was obtained by visual analog scale. Fatigue was evaluated by PROMIS® Fatigue-10a-Pediatric-v2.0-short-form and PROMIS® Fatigue-10a-Parent-Proxy-v2.0-short-form. Multivariate linear regression analyses explored associations between physical fitness (dependent variable) and independent variables that emerged from the univariate linear regression analyses (criterion p <.05). The total group (MFS and LDS) and the MFS subgroup scored below norms on physical fitness TTE Z-score (mean (SD) −3.1 (2.9); −3.0 (3.0), respectively). Univariate analyses showed associations between TTE Z-score aortic surgery, fatigue, and pain (criterion p <.05). Multivariate analyses showed an association between physical fitness and pediatric self-reported fatigue that explained 48%; 49%, respectively, of TTE Z-score variance (F (1,18) = 18.6, p ≤.001, r2 =.48; F (1,15) = 16,3, p =.01, r2 =.49, respectively). Conclusions: Physical fitness is low in children with MFS or LDS and associated with self-reported fatigue. Our findings emphasize the potential of standardized and tailored exercise programs to improve physical fitness and reduce fatigue, ultimately enhancing the physical activity and sports, school, leisure, and work participation of children with MFS and LDS. (Table presented.)
DOCUMENT
Our unilateral diet has resulted in a deficiency of specific elements/components needed for well-functioning of the human body. Especially the element magnesium is low in our processed food and results in neuronal and muscular malfunctioning, problems in bone heath/strength, and increased chances of diabetes, depression and cardiovascular diseases. Furthermore, it has also been recognized that magnesium plays an important role in cognitive functioning (impairment and enhancement), especially for people suffering from neurodegenerative diseases (Parkinson disease, Alzheimer, etc). Recently, it has been reported that magnesium addition positively effects sleep and calmness (anti-stress). In order to increase the bioavailability of magnesium cations, organic acids such as citrate, glycerophosphate and glycinate are often used as counterions. However, the magnesium supplements that are currently on the market still suffer from low bio-availability and often do not enter the brain significantly.The preparation of dual/multiple ligands of magnesium in which the organic acid not only functions as a carrier but also has synergistically/complementary biological effects is widely unexplored and needs further development. As a result, there is a strong need for dual/multiple magnesium supplements that are non-toxic, stable, prepared via an economically and ecologically attractive route, resulting in high bioavailability of magnesium in vivo, preferably positively influencing cognition/concentration
Micro and macro algae are a rich source of lipids, proteins and carbohydrates, but also of secondary metabolites like phytosterols. Phytosterols have important health effects such as prevention of cardiovascular diseases. Global phytosterol market size was estimated at USD 709.7 million in 2019 and is expected to grow with a CAGR of 8.7% until 2027. Growing adoption of healthy lifestyle has bolstered demand for nutraceutical products. This is expected to be a major factor driving demand for phytosterols. Residues from algae are found in algae farming and processing, are found as beachings and are pruning residues from underwater Giant Kelp forests. Large amounts of brown seaweed beaches in the province of Zeeland and are discarded as waste. Pruning residues from Giant Kelp Forests harvests for the Namibian coast provide large amounts of biomass. ALGOL project considers all these biomass residues as raw material for added value creation. The ALGOL feasibility project will develop and evaluate green technologies for phytosterol extraction from algae biomass in a biocascading approach. Fucosterol is chosen because of its high added value, whereas lipids, protein and carbohydrates are lower in value and will hence be evaluated in follow-up projects. ALGOL will develop subcritical water, supercritical CO2 with modifiers and ethanol extraction technologies and compare these with conventional petroleum-based extractions and asses its technical, economic and environmental feasibility. Prototype nutraceutical/cosmeceutical products will be developed to demonstrate possible applications with fucosterol. A network of Dutch and African partners will supply micro and macro algae biomass, evaluate developed technologies and will prototype products with it, which are relevant to their own business interests. ALGOL project will create added value by taking a biocascading approach where first high-interest components are processed into high added value products as nutraceutical or cosmeceutical.
Micro and macro algae are a rich source of lipids, proteins and carbohydrates, but also of secondary metabolites like phytosterols. Phytosterols have important health effects such as prevention of cardiovascular diseases. Global phytosterol market size was estimated at USD 709.7 million in 2019 and is expected to grow with a CAGR of 8.7% until 2027. Growing adoption of healthy lifestyle has bolstered demand for nutraceutical products. This is expected to be a major factor driving demand for phytosterols.Residues from algae are found in algae farming and processing, are found as beachings and are pruning residues from underwater Giant Kelp forests. Large amounts of brown seaweed beaches in the province of Zeeland and are discarded as waste. Pruning residues from Giant Kelp Forests harvests for the Namibian coast provide large amounts of biomass. ALGOL project considers all these biomass residues as raw material for added value creation.The ALGOL feasibility project will develop and evaluate green technologies for phytosterol extraction from algae biomass in a biocascading approach. Fucosterol is chosen because of its high added value, whereas lipids, protein and carbohydrates are lower in value and will hence be evaluated in follow-up projects. ALGOL will develop subcritical water, supercritical CO2 with modifiers and ethanol extraction technologies and compare these with conventional petroleum-based extractions and asses its technical, economic and environmental feasibility. Prototype nutraceutical/cosmeceutical products will be developed to demonstrate possible applications with fucosterol.A network of Dutch and African partners will supply micro and macro algae biomass, evaluate developed technologies and will prototype products with it, which are relevant to their own business interests. ALGOL project will create added value by taking a biocascading approach where first high-interest components are processed into high added value products as nutraceutical or cosmeceutical.