The title uronates were prepared by 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) catalysed sodium hypochlorite oxidation of α- and β-D-glucopyranosylphosphate (α-/β-Glc-1-P) and α-D-glucopyranosyl fluoride (α-Glc-1-F). Quantitative recovery of the TEMPO catalyst was achieved by azeotropic distillation of a small part of the reaction mixture. Also, a heterogeneous catalyst system was prepared by immobilisation of 4-oxo-tetramethyl-1-piperidinyloxy (OTEMPO) on amino-functionalized silica. The protected uronates were hydrolysed to yield D-glucuronate. Since α- and β-Glc-1-P and α-Glc-1-F can be obtained from starch in one step, D-glucuronic acid is now available from starch in a convenient three-step sequence.
LINK
The scope of this thesis of Gerrit Bouwhuis, lecturer at Saxion Research Centre for Design and Technology in Enschede is the development of a new industrial applicable pre-treatment process for cotton based on catalysis. The pre-treatment generally consists of desizing, scouring and bleaching. These processes can be continuous or batch wise. Advances in the science of biocatalytic pre-treatment of cotton and catalytic bleaching formed the scientific basis for this work. The work of Agrawal on enzymes for bio-scouring and of Topalovic on catalytic bleaching led to the conclusion that reduced reaction temperatures for the pre-treatment processes of cotton are possible. A second reason for the present work is a persistent and strong pressure on the industry to implement ‘more sustainable’ and environmental friendlier processes. It was clear that for the industrial implementation of the newly developed process it would be necessary to ‘translate’ the academic knowledge based on the catalysts, into a process at conditions that are applicable in textile industry. Previous experiences learned that the transition from academic knowledge into industrial applicable processes often failed. This is caused by lack of experience of university researchers with industrial product and process development as well as a lack of awareness of industrial developers of academic research. This is especially evident for the so-called Small and Medium Enterprises (SME’s). To overcome this gap a first step was to organize collaboration between academic institutes and industries. The basis for the collaboration was the prospect of this work for benefits for all parties involved. A rational approach has been adopted by first gathering knowledge about the properties and morphology of cotton and the know how on the conventional pre-treatment process. To be able to understand the conventional processes it was necessary not only to explore the chemical and physical aspects but also to evaluate the process conditions and equipment that are used. This information has been the basis for the present lab research on combined bio-catalytic desizing and scouring as well as catalytic bleaching. For the measurement of the performance of the treatments and the process steps, the performance indicators have been evaluated and selected. Here the choice has been made to use industrially known and accepted performance indicators. For the new bio-catalytic pre-treatment an enzyme cocktail, consisting of amylase, cutinase and pectinase has been developed. The process conditions in the enzyme cocktail tests have been explored reflecting different pre-treatment equipment as they are used in practice and for their different operation conditions. The exploration showed that combined bio-catalytic desizing and scouring seemed attractive for industrial application, with major reduction of the reaction and the rinsing temperatures, leading to several advantages. The performance of this treatment, when compared with the existing industrial treatment showed that the quality of the treated fabric was comparable or better than the present industrial standard, while concentrations enzymes in the cocktail have not yet been fully optimized. To explore the application of a manganese catalyst in the bleaching step of the pre-treatment process the fabrics were treated with the enzyme cocktail prior to the bleaching. It has been decided not to use conventional pre-treatment processes because in that case the combined desizing and scouring step would not be integrated in the newly developed process. To explore catalytic bleaching it has been tried to mimic the existing industrial processes where possible. The use of the catalyst at 100°C, as occurs in a conventional steamer, leads to decomposition of the catalyst and thus no bleach activation occurs. This led to the conclusion that catalytic bleaching is not possible in present steamers nor at low temperatur
MULTIFILE
Problems of energy security, diversification of energy sources, and improvement of technologies (including alternatives) for obtaining motor fuels have become a priority of science and practice today. Many scientists devote their scientific research to the problems of obtaining effective brands of alternative (reformulated) motor fuels. Our scientific school also deals with the problems of the rational use of traditional and alternative motor fuels.This article focused on advances in motor fuel synthesis using natural, associated, or biogas. Different raw materials are used for GTL technology: biomass, natural and associated petroleum gases. Modern approaches to feed gas purification, development of Gas-to-Liquid-technology based on Fischer–Tropsch synthesis, and liquid hydrocarbon mixture reforming are considered.Biological gas is produced in the process of decomposition of waste (manure, straw, grain, sawdust waste), sludge, and organic household waste by cellulosic anaerobic organisms with the participation of methane fermentation bacteria. When 1 tonne of organic matter decomposes, 250 to 500–600 cubic meters of biogas is produced. Experts of the Bioenergy Association of Ukraine estimate the volume of its production at 7.8 billion cubic meters per year. This is 25% of the total consumption of natural gas in Ukraine. This is a significant raw material potential for obtaining liquid hydrocarbons for components of motor fuels.We believe that the potential for gas-to-liquid synthetic motor fuels is associated with shale and coalfield gases (e.g. mine methane), methane hydrate, and biogas from biomass and household waste gases.
DOCUMENT
Synthetic fibers, mainly polyethylene terephthalate (PET), polyamide (PA), polyacrylonitrile (PAN) and polypropylene (PP), are the most widely used polymers in the textile industry. These fibers surpass the production of natural fibers with a market share of 54.4%. The advantages of these fibers are their high modulus and strength, stiffness, stretch or elasticity, wrinkle and abrasion resistances, relatively low cost, convenient processing, tailorable performance and easy recycling. The downside to synthetic fibers use are reduced wearing comfort, build-up of electrostatic charge, the tendency to pill, difficulties in finishing, poor soil release properties and low dyeability. These disadvantages are largely associated with their hydrophobic nature. To render their surfaces hydrophilic, various physical, chemical and bulk modification methods are employed to mimic the advantageous properties of their natural counterparts. This review is focused on the application of recent methods for the modification of synthetic textiles using physical methods (corona discharge, plasma, laser, electron beam and neutron irradiations), chemical methods (ozone-gas treatment, supercritical carbon dioxide technique, vapor deposition, surface grafting, enzymatic modification, sol-gel technique, layer-by-layer deposition of nano-materials, micro-encapsulation method and treatment with different reagents) and bulk modification methods by blending polymers with different compounds in extrusion to absorb different colorants. Nowadays, the bulk and surface functionalization of synthetic fibers for various applications is considered as one of the best methods for modern textile finishing processes (Tomasino, 1992). This last stage of textile processing has employed new routes to demonstrate the great potential of nano-science and technology for this industry (Lewin, 2007). Combination of physical technologies and nano-science enhances the durability of textile materials against washing, ultraviolet radiation, friction, abrasion, tension and fading (Kirk–Othmer, 1998). European methods for application of new functional finishing materials must meet high ethical demands for environmental-friendly processing (Fourne, 1999). For this purpose the process of textile finishing is optimized by different researchers in new findings (Elices & Llorca, 2002). Application of inorganic and organic nano-particles have enhanced synthetic fibers attributes, such as softness, durability, breathability, water repellency, fire retardancy and antimicrobial properties (Franz, 2003; McIntyre, 2005; Xanthos, 2005). This review article gives an application overview of various physical and chemical methods of inorganic and organic structured material as potential modifying agents of textiles with emphasis on dyeability enhancements. The composition of synthetic fibers includes polypropylene (PP), polyethylene terephthalate (PET), polyamides (PA) or polyacrylonitrile (PAN). Synthetic fibers already hold a 54% market share in the fiber market. Of this market share, PET alone accounts for almost 50% of all fiber materials in 2008 (Gubitz & Cavaco-Paulo, 2008). Polypropylene, a major component for the nonwovens market accounts for 10% of the market share of both natural and synthetic fibers worldwide (INDA, 2008 and Aizenshtein, 2008). It is apparent that synthetic polymers have unique properties, such as high uniformity, mechanical strength and resistance to chemicals or abrasion. However, high hydrophobicity, the build-up of static charges, poor breathability, and resistant to finishing are undesirable properties of synthetic materials (Gubitz & Cavaco-Paulo, 2008). Synthetic textile fibers typically undergo a variety of pre-treatments before dyeing and printing is feasible. Compared to their cotton counterparts, fabrics made from synthetic fibers undergo mild scouring before dyeing. Nonetheless, these treatments still create undesirable process conditions wh
MULTIFILE
The proposed bi-functional protective structure intended to have hydrophilic interior towards the skin surface and hydrophobic exterior for protection, ensuring fast transfer of moisture between body and external environment. The sandwich structure is prepared using 100% wool jersey and varieties of 100% polyester fabrics. Hydrophilic treatments were given using cutinase (fusarium solani pisi) enzyme and commercial hydrophilic softener Ruco Pur Sly®. The polyester fabrics were given a hydrophobic treatment with Ruco Dry Eco® - a commercial cationic water repellent preparation. Variables include enzyme treatment time, and change in pressure to achieve suitable wet pick up at foulard. Several wool-polyester sandwich structures with optimum hydrophilic/hydrophobic properties were made by thermal adhesion using thin polyamide layer. Drop test and vapour permeability test were conducted to evaluate wetting properties and breathability of the samples. Sandwich structure comprising hydrophilic wool-jersey and hydrophobic PES spacer fabric showed the highest value for water vapour permeability. Paper written by the Saxion chair Smart Functional Materials and the Technical University of Iasi, Romania, for and accepted by the Autex Conference 2013.
MULTIFILE
The in-depth assessment of the situation of the European textile and clothing sector is composed by six independent reports with a close focus on key aspects useful to understand the dynamics and the development of the textile and clothing industry, drivers of change – most notably the impact of the financial crisis – and identification of policy responses and best practices. This has been done in six specific tasks leading to the six reports: Task 1 Survey on the situation of the EU textile and clothing sector Task 2 Report on research and development Task 3 Report on SME situation Task 4 Report on restructuring Task 5 Report on training and Education Task 6 Report on innovation practices. This final report draws on the key findings of each independent report, highlighting major conclusions in order to describe the situation of the textile and clothing industry and the way forward for the sector. In line with the terms of reference the findings in the six reports have been analysed in connection with the developments following the recommendations drafted by the High Level Group on textiles and clothing (further referred to as HLG), installed in 2004 as a response to the European Commission Communication of 29th of October 2003 on the textile and clothing industry. The HLG was composed of leading personalities representing stakeholders in the textiles and clothing industry and issued two reports entailing a vision and recommendations.
MULTIFILE
This essay is based on research promoted by INDIRE, Italian NationalInstitute for Documentation, Innovation and Educational Researchin Education, and is developed under the research on ‘Professionalnetworks, Educational models and School principal’s profile in Italy’. Onthe basis of observation and analysis of research data, a new theoryis assumed and new characteristics are defined, belonging to bothprofessional networks and educational models applied to all typesof professional networks. The characteristics so far identified are:plastic nature of networks, network punctuated equilibrium, networkconnectivity, emergent behavior and sociality of network members.It is also shown how the knowledge shared in a network materializes inEvents that produce Event Capital. The theory will be complemented byan experimentation phase.
MULTIFILE