In recent years electric mobility has gained a great deal of attention, leading to electric vehicles on the market and development of necessary charging infrastructure. Charging infrastructure is mostly enabled through subsidies by local or national governments to overcome the chicken and egg problem, while the business case for charge stations in this early stage of development is not yet sufficient. The municipality of Amsterdam is a forerunner in the development of charge infrastructure, with over 500 public charge points available. The municipality and service providers struggle how to optimize the roll out of further charge points and how to optimize the use of the charge points. This paper gives a detailed analysis of the actual usage patterns of the public charging infrastructure in the city of Amsterdam, based on more than 109.000 charge sessions collected at the existing local charge points in 2012/2013. The conclusions from this analysis can be used to gain insight in the actual usage patterns of public charging infrastructure and may lead to recommendations concerning further roll out of charge stations, increasing effectiveness and improving the business case for charge points. The conclusions and recommendations may have implications for, and may support municipalities in the effective development of charging infrastructure.
DOCUMENT
Developers of charging infrastructure, be it public or private parties, are highly dependent on accurate utilization data in order to make informed decisions where and when to expand charging points. The Amsterdam The Amsterdam University of Applied Sciences in close cooperation with the municipalities of Amsterdam, Rotterdam, The Hague, Utrecht and the metropolitan region of Amsterdam developed both the back- and front-end of a decision support tool. This paper describes the design of the decision support tool and its DataWareHouse architecture. The back-end is based on a monthly update of charging data with Charge point Detail Records and Meter Values enriched with location specific data. The design of the front-end is based on Key Performance Indicators used in the decision process for charging infrastructure roll-out. Implementing this design and DataWareHouse architecture allows all kinds of EV related companies and cities to start monitoring their charging infrastructure. It provides an overview of how the most important KPIs are being monitored and represented in the decision support tool based on regular interviews and decision processes followed by four major cities and a metropolitan region in the Netherlands.
DOCUMENT
Since 2012 the dutch metropolitan area (the metropole region of amsterdam, the city of amsterdam, rotterdam, the hague, utrecht ) cooperate in finding the best way to stimulate electric mobility through the implementation of a public charging infrastructure. with more than 5600 charge points and 1.6 million charge sessions in the last two years this is one of the most extensively used public charging infrastructure available worldwide. in this paper a benchmark study is carried out to identify different charge patterns between these 5 leading areas with an extensive public charging infrastructure to establish whether and how charge behaviour (e.g. charged volume, capacity utilization, unique users) differs between cities. based on the results first explanations for possible differences in charge patterns between cities will be provided. the study aims to contribute to a better understanding of the utilization of public charging infrastructure in a metropolitan area existing of four city centres and the amsterdam metropolitan area and to provide input for policy makers to prepare a public charging infrastructure ready for the projected growth of electric mobility in the next five years.
DOCUMENT
Phosphorus is an essential element for life, whether in the agricultural sector or in the chemical industry to make products such as flame retardants and batteries. Almost all the phosphorus we use are mined from phosphate rocks. Since Europe scarcely has any mine, we therefore depend on imported phosphate, which poses a risk of supply. To that effect, Europe has listed phosphate as one of its main critical raw materials. This creates a need for the search for alternative sources of phosphate such as wastewater, since most of the phosphate we use end up in our wastewater. Additionally, the direct discharge of wastewater with high concentration of phosphorus (typically > 50 ppb phosphorus) creates a range of environmental problems such as eutrophication . In this context, the Dutch start-up company, SusPhos, created a process to produce biobased flame retardants using phosphorus recovered from municipal wastewater. Flame retardants are often used in textiles, furniture, electronics, construction materials, to mention a few. They are important for safety reasons since they can help prevent or spread fires. Currently, almost all the phosphate flame retardants in the market are obtained from phosphate rocks, but SusPhos is changing this paradigm by being the first company to produce phosphate flame retardants from waste. The process developed by SusPhos to upcycle phosphate-rich streams to high-quality flame retardant can be considered to be in the TRL 5. The company seeks to move further to a TRL 7 via building and operating a demo-scale plant in 2021/2022. BioFlame proposes a collaboration between a SME (SusPhos), a ZZP (Willem Schipper Consultancy) and HBO institute group (Water Technology, NHL Stenden) to expand the available expertise and generate the necessary infrastructure to tackle this transition challenge.
In the coming decades, a substantial number of electric vehicle (EV) chargers need to be installed. The Dutch Climate Accord, accordingly, urges for preparation of regional-scale spatial programs with focus on transport infrastructure for three major metropolitan regions among them Amsterdam Metropolitan Area (AMA). Spatial allocation of EV chargers could be approached at two different spatial scales. At the metropolitan scale, given the inter-regional flow of cars, the EV chargers of one neighbourhood could serve visitors from other neighbourhoods during days. At the neighbourhood scale, EV chargers need to be allocated as close as possible to electricity substations, and within a walkable distance from the final destination of EV drivers during days and nights, i.e. amenities, jobs, and dwellings. This study aims to bridge the gap in the previous studies, that is dealing with only of the two scales, by conducting a two-phase study on EV infrastructure. At the first phase of the study, the necessary number of new EV chargers in 353 4-digit postcodes of AMA will be calculated. On the basis of the findings of the Phase 1, as a case study, EV chargers will be allocated at the candidate street parking locations in the Amsterdam West borough. The methods of the study are Mixed-integer nonlinear programming, accessibility and street pattern analysis. The study will be conducted on the basis of data of regional scale travel behaviour survey and the location of dwellings, existing chargers, jobs, amenities, and electricity substations.
Based on the model outcomes, Houtlaan’s energy transition will likely result in congestion and curtailmentproblems on the local electricity grid within the next 5-7 years, possibly sooner if load imbalance between phasesis not properly addressed.During simulations, the issue of curtailment was observed in significant quantities on one cable, resulting in aloss of 8.292 kWh of PV production per year in 2030. This issue could be addressed by moving some of thehouses on the affects cable to a neighboring under-utilized cable, or by installing a battery system near the end ofthe affected cable. Due to the layout of the grid, moving the last 7 houses on the affected cable to the neighboringcable should be relatively simple and cost-effective, and help to alleviate issues of curtailment.During simulations, the issue of grid overloading occurred largely as a result of EV charging. This issue can bestbe addressed by regulating EV charging. Based on current statistics, the bulk of EV charging is expected to occurin the early evening. By prolonging these charge cycles into the night and early morning, grid overloading canlikely be prevented for the coming decade. However, such a control system will require some sort of infrastructureto coordinate the different EV charge cycles or will require smart EV chargers which will charge preferentiallywhen the grid voltage is above a certain threshold (i.e., has more capacity available).A community battery system can be used to increase the local consumption of produced electricity within theneighborhood. Such a system can also be complemented by charging EV during surplus production hours.However, due to the relatively high cost of batteries at present, and losses due to inefficiencies, such a systemwill not be financially feasible without some form of subsidy and/or unless it can provide an energy service whichthe grid operator is willing to pay for (e.g. regulating power quality or line voltage, prolonging the lifetime of gridinfrastructure, etc.).A community battery may be most useful as a temporary solution when problems on the grid begin to occur, untila more cost-effective solution can be implemented (e.g. reinforcing the grid, implementing an EV charge controlsystem). Once a more permanent solution is implemented, the battery could then be re-used elsewhere.The neighborhood of Houtlaan in Assen, the Netherlands, has ambitious targets for reducing the neighborhood’scarbon emissions and increasing their production of their own, sustainable energy. Specifically, they wish toincrease the percentage of houses with a heat pump, electric vehicle (EV) and solar panels (PV) to 60%, 70%and 80%, respectively, by the year 2030. However, it was unclear what the impacts of this transition would be onthe electricity grid, and what limitations or problems might be encountered along the way.Therefore, a study was carried out to model the future energy load and production patterns in Houtlaan. Thepurpose of the model was to identify and quantify the problems which could be encountered if no steps are takento prevent these problems. In addition, the model was used to simulate the effectiveness of various proposedsolutions to reduce or eliminate the problems which were identified