The Netherlands is a frontrunner in the field of public charging infrastructure, having a high number of public charging stations per electric vehicle (EV) in the world. During the early years of adoption (2012-2015) a large percentage of the EV fleet were Plugin Hybrid Electric Vehicles (PHEV)due to the subsidy scheme at that time. With an increasing number of Full Electric Vehicles (FEVs) on the market and a current subsidy scheme for FEV only, a transition of the EV fleet from PHEV to FEV is expected. This is hypothesized to have effect on charging behavior of the complete fleet, reason to understand better how PHEVs and FEVs differ in charging behavior and how this impacts charging infrastructure usage. In this paper, the effects of the transition of PHEV to FEV is simulated by extending an existing Agent Based Model. Results show important effects of this transitionon charging infrastructure performance.
DOCUMENT
With the rise of the number of electric vehicles, the installment of public charging infrastructure is becoming more prominent. In urban areas in which EV users rely on on-street parking facilities, the demand for public charging stations is high. Cities take on the role of implementing public charging infrastructure and are looking for efficient roll-out strategies. Municipalities generally reserve the parking spots next to charging stations to ensure their availability. Underutilization of these charging stations leads to increased parking pressure, especially during peak hours. The city of The Hague has therefore implemented daytime reservation of parking spots next to charging stations. These parking spots are exclusively available between 10:00 and 19:00 for electric vehicles and are accessible for other vehicles beyond these times. This paper uses a large dataset with information on nearly 40.000 charging sessions to analyze the implementation of the abovementioned scheme. An unique natural experiment was created in which charging stations within areas of similar parking pressure did or did not have this scheme implemented. Results show that implemented daytime charging 10-19 can restrict EV owners in using the charging station at times when they need it. An extension of daytime charging to 10:00-22:00 proves to reduce the hurdle for EV drivers as only 3% of charging sessions take place beyond this time. The policy still has the potential to relieve parking pressure. The paper contributes to the knowledge of innovative measures to stimulate the optimized rollout and usage of charging infrastructure.
DOCUMENT
The understanding of charging behavior has been recognized as a crucial element in optimizing roll out of charging infrastructure. While current literature provides charging choices and categorizations of charging behavior, these seem oversimplified and limitedly based on charging data. In this research we provide a typology of charging behavior and electric vehicle user types based on 4.9 million charging transactions from January 2017 until March 2019 and 27,000 users on 7079 Charging Points the public level 2 charging infrastructure of 4 largest cities and metropolitan areas of the Netherlands. We overcome predefined stereotypical expectations of user behavior by using a bottom-up data driven two-step clustering approach that first clusters charging sessions and thereafter portfolios of charging sessions per user. From the first clustering (Gaussian Mixture) 13 distinct charging session types were found; 7 types of daytime charging sessions (4 short, 3 medium duration) and 6 types of overnight charging sessions. The second clustering (Partition Around Medoids) clustering result in 9 user types based on their distinct portfolio of charging session types. We found (i) 3 daytime office hours charging user types (ii) 3 overnight user types and (iii) 3 non-typical user types (mixed day and overnight chargers, visitors and car sharing). Three user types show significant peaks at larger battery sizes which affects the time between sessions. Results show that none of the user types display solely stereotypical behavior as the range of behaviors is more varied and more subtle. Analysis of population composition over time revealed that large battery users increase over time in the population. From this we expect that shifts charging portfolios will be observed in future, while the types of charging remain stable.
DOCUMENT