Developers of charging infrastructure, be it public or private parties, are highly dependent on accurate utilization data in order to make informed decisions where and when to expand charging points. The Amsterdam The Amsterdam University of Applied Sciences in close cooperation with the municipalities of Amsterdam, Rotterdam, The Hague, Utrecht and the metropolitan region of Amsterdam developed both the back- and front-end of a decision support tool. This paper describes the design of the decision support tool and its DataWareHouse architecture. The back-end is based on a monthly update of charging data with Charge point Detail Records and Meter Values enriched with location specific data. The design of the front-end is based on Key Performance Indicators used in the decision process for charging infrastructure roll-out. Implementing this design and DataWareHouse architecture allows all kinds of EV related companies and cities to start monitoring their charging infrastructure. It provides an overview of how the most important KPIs are being monitored and represented in the decision support tool based on regular interviews and decision processes followed by four major cities and a metropolitan region in the Netherlands.
DOCUMENT
Underutilised charging stations can be a bottleneck in the swift transition to electric mobility. This study is the first to research cooperative behaviour at public charging stations as a way to address improved usage of public charging stations. It does so by viewing public charging stations as a common-pool resource and explains cooperative behaviour from an evolutionary perspective. Current behaviour is analysed using a survey (313 useful responses) and an analysis of large dataset (2.1 million charging sessions) on the use of public charging infrastructure in Amsterdam, The Netherlands. In such a way it identifies the potential, drivers and possible obstacles that electric vehicle drivers experience when cooperating with other drivers to optimally make use of existing infrastructure. Results show that the intention to show direct reciprocal charging behaviour is high among the respondents, although this could be limited if the battery did not reach full or sufficient state-of-charge at the moment of the request. Intention to show direct reciprocal behaviour is mediated by kin and network effects.
MULTIFILE
At this moment, charging your electric vehicle is common good, however smart charging is still a novelty in the developing phase with many unknowns. A smart charging system monitors, manages and restricts the charging process to optimize energy consumption. The need for, and advantages of smart charging electric vehicles are clear cut from the perspective of the government, energy suppliers and sustainability goals. But what about the advantages and disadvantages for the people who drive electric cars? What opportunities are there to support the goals of the user to make smart charging desirable for them? By means of qualitative Co-design methods the underlying motives of early adaptors for joining a smart charging service were uncovered. This was done by first sensitizing the user about their current and past encounters with smart charging to make them more aware of their everyday experiences. This was followed by another generative method, journey mapping and in-depth interviews to uncover the core values that drove them to participate in a smart charging system. Finally, during two co-design sessions, the participants formed groups in which they were challenged to design the future of smart charging guided by their core values. The three main findings are as follows. Firstly, participants are looking for ways to make their sustainable behaviour visible and measurable for themselves. For example, the money they saved by using the smart charging system was often used as a scoreboard, more than it was about theactual money. Secondly, they were more willing to participate in smart charging and discharging (sending energy from their vehicle back to the grid) if it had a direct positive effect on someone close to them. For example, a retiree stated that he was more than willing to share the energy of his car with a neighbouring family in which both young parents work, making them unable to charge their vehicles at times when renewable energy is available in abundance. The third and last finding is interrelated with this, it is about setting the right example. The early adopters want to show people close to them that they are making an effort to do the right thing. This is known as the law of proximity and is well illustrated by a participant that bought a second-hand, first-generation Nissan Leaf with a range of just 80 km in the summer and even less in winter. It isn’t about buying the best or most convenient car but about showing the children that sometimes it takes effort to do the right thing. These results suggest that there are clear opportunities for suppliers of smart EV charging services to make it more desirable for users, with other incentives than the now commonly used method of saving money. The main takeaway is that early adopters have a desire for their sustainable behaviour to be more visible and tangible for themselves and their social environment. The results have been translated into preliminary design proposals in which the law of proximity is applied.
DOCUMENT
Residential public charging points are shared by multiple electric vehicle drivers, often neighbours. Therefore, charging behaviour is embedded in a social context. Behaviours that affect, or are influenced by, other publiccharging point users have been sparsely studied and lack an overarching and comprehensive definition. Consequently, very few measures are applied in practice to influence charging behaviour. We aim to classify and define the social dimension of charging behaviour from a social-psychological perspective and, using a behaviour change framework, identify and analyse the measures to influence this behaviour. We interviewed 15 experts onresidential public charging infrastructure in the Netherlands. We identified 17 charging behaviours rooted in interpersonal interactions between individuals and interactions between individuals and technology. These behaviours can be categorised into prosocial and antisocial charging behaviours. Prosocial charging behaviour provides or enhances the opportunity for other users to charge their vehicle at the public charging point, for instance by charging only when necessary. Antisocial charging behaviour prevents or diminishes this opportunity, for instance by occupying the charging point after charging, intentionally or unintentionally. We thenidentified 23 measures to influence antisocial and prosocial charging behaviours. These measures can influence behaviour through human–technology interaction, such as providing charging etiquettes to new electric vehicle drivers or charging idle fees, and interpersonal interaction, such as social pressure from other charging point users or facilitating social interactions to exchange requests. Our approach advocates for more attention to the social dimension of charging behaviour.
DOCUMENT
Research outcomes with regard to charging behaviour and simulation of charging behaviour based on charging data of the public charging infrastructure in Amsterdam, Rotterdam, The Hague, Utrecht and the Metropolitan Region of Amsterdam
DOCUMENT
During the COVID-19—related lockdowns (2020–2022), mobility patterns and charging needs were substantially affected. Policies such as work from home, lockdowns, and curfews reduced traffic and commuting significantly. This global pandemic may have also substantially changed mobility patterns on the long term and therefore the need for electric vehicle charging infrastructure. This paper analyzes changes in electric charging in the Netherlands for different user groups during different phases of the COVID-19 lockdown to assess the effects on EV charging needs. Charging needs dropped significantly during this period, which also changed the distribution of the load on the electricity grid throughout the day. Curfews affected the start times of charging sessions during peak hours of grid consumption. Infrastructure dedicated to commuters was used less intensively, and the charging needs of professional taxi drivers were drastically reduced during lockdown periods. These trends were partially observed during a post–lockdown measuring period of roughly 8 months, indicating a longer shift in mobility and charging patterns.
DOCUMENT
The COVID-19 lockdowns showed that working from home and conducting meetings online can change mobility patterns and needs substantially. This global pandemic may have also substantially changed mobility patterns on the long-term and therefore, also the need of electric vehicle charging infrastructure. Charging need dropped significantly but also changed the distribution of the load on the electricity grid throughout the day. This paper analyses changes in electric charging for different user groups during different phases of the pandemic to assess the long-term effects on EV charging needs.
DOCUMENT
Charging an electric vehicle needs to be as simple as possible for the user. He needs to park his car, plug his vehicle and identify to start charging. There is no need to understand the technology and protocols needed to reach this simple task.For the students and researchers of the Amsterdam University of Applied Science (AUAS / HvA), there is a need to understand as deep as possible all the techniques involved in this technology.The purpose of this document is to give to the reader the information he needs to understand how an electric car can be charged and how he can use these knowledges to analyses and interpret data.
DOCUMENT
As society has to adapt to changing energy sources and consumption, it is driving away from fossil energy. One particular area of interest is electrical driving and the increasing demand for (public) charging facilities. For municipalities, it is essential to adapt to this changing demand and provide more public charging facilities.In order to accommodate on roll-out strategies in metropolitan areas a data driven simulation model, SEVA1, has been developed The SEVA base model used in this paper is an Agent-Based model that incorporate past sessions to predict future charging behaviour. Most EV users are habitual users and tend to use a small subset of the available charge facilities, by that obtaining a pattern is within the range possibilities. Yet, for non-habitual users, for example, car sharing users, obtaining a pattern is much harder as the cars use a significantly higher amount of charge points.The focus of this research is to explore different model implementations to assess the potential of predicting free-floating cars from the non-habitual user population. Most important result is that we now can simulate effects of deployement of car sharing users in the system, and with that the effect on convenience for habitual users. Results show that the interaction between habitual and non habitual EV users affect the unsuccessful connection attempts based increased based on the size of the car-sharing fleet up to approximately 10 percent. From these results implications for policy makers could be drawn.
MULTIFILE
Controlled charging of electric vehicles (EVs) can be used to avoid peaks in the power grid by limiting, and shifting the EV power demand during peak hours. This paper presents results on user preferences and experiences regarding controlled (or smart) charging of EVs via home chargers. Data is derived from a controlled charging demonstration project, in which 138 Dutch households participated. With the availability of an override button, households were assigned either a static or dynamic charging profile. Using surveys and interviews, data was collected on three topics: (1) controlled charging, (2) the override button and (3) financial motivations.
DOCUMENT