How can we make Inquiry-Based Science and Mathematics Education (IBSME) durable? …. by incorporating it in the pre-service programs for elementary teachers! With pre-service students the training can be much more intensive than with inservice teachers. To have an impact in the classroom the minimum contact time in IBSME in-service and coaching has to be more than 90 hours (Supovitz & Turner, 2000). That number is hard to achieve in in-service but it is quite possible in preservice teacher education. From 9 – 11 January 2013 the Hogeschool van Amsterdam (HvA) hosted a field-visit sponsored by the EU Fibonacci project with a focus on pre-service teacher education. HvA developed two programs to strengthen IBSME in pre-service. One is an elective minor (30 ECTS) Science and Technology Education in the regularelementary teacher education program. The other is a pre-service program for academically talented students jointly developed by the University of Amsterdam and the Hogeschool of Amsterdam with inquiry as a major emphasis. The two programs are described in chapters 1 & 3 in this booklet. If you are still wondering what IBSE is, then read chapter 2 of Ana Blagotinsek of the University of Slovenia. She describes a neat example of an IBSE process with students in elementary teacher education. How do you start with a real worldquestion and initially little knowledge, and how do you investigate the question and eventually generate the knowledge needed to answer it? During the field-visit each participant presented one particularly successful approach in teacher training, for example, training teachers by ‘model teaching’ activities with these teachers’ own pupils. This method was used in different ways by 4 participants in different countries. They describe this in chapters 4 – 7. In chapter 8 colleague Frans Van Mulken describes the development of a lessonseries on graphs, rate of change, and speed using inquiry strategies inspired by the late mathematician and mathematics educator Hans Freudenthal. He also describes how pre-service students could be trained to teach the lesson series as inquiry. Simultaneously with this booklet, a Dutch booklet is published with overlapping contents but focused more on the Dutch context.
This paper describes a study into consumers' reasons for buying socially responsible (SR) products, such as Fair Trade products and organic meat. As opposed to other studies, we use a qualitative approach based on 25 in-depth interviews and include several different products in the research. This leads to several new results, such as: (1) buying SR products is perceived as an imperfect moral duty; (2) low quality of SR products is a dissatisfier, but high quality not a satisfier; (3) the attitude towards SR products is related to the reputation of charitable funds; (4) the demand for SR products is negatively related to the frequency of purchasing SR products; (5) reflection on SR products raises the demand for SR products; (6) consumers that have witnessed the social problems that SR products aim to alleviate purchase more SR products. Finally, we find that the demand for different SR products is correlated: if a consumer buys one SR product, it is more likely that (s)he purchases other SR products as well.
Kumasi and RokitScience contribute to increasing the ownership and income of cocoa farmers, with an emphasis on women. Kumasi has a successful history of developing and marketing cocoa juice, which aims to keep as much income as possible with the farmer. RokitScience has been involved in the creation of the Rokbar: a "bean to bar" empowering chocolate bar that is marketed and made entirely by women. Kumasi and RokitScience started setting up a cocoa-fruit-lab at the cocoa-cooperative COVIMA in early 2021 in Ivory-Coast, in collaboration with Beyond Beans Foundation/ETG and Döhler and financially supported by the Sustainable-Trade-Initiative (IDH). The goal is to support the cooperative, which is led by women, with the establishment of circular cocoa juice and chocolate production and in this way increase the income of the members of the cooperative. The cocoa pod contains cocoa beans embedded in cocoa pulp. This pulp is sweet and juicy and partly needed for cocoa bean fermentation for flavor development. Residual pulp can be used for new products like drinks, marmalades and more. The collaboration in the cocoa fruit lab created momentum to try-out a more circular approach whereby the extraction of juice was linked to a shorter fermentation period of the beans, influencing quality features of both the beans and potentially the chocolate. However, to optimize the production of juicy beans further and find a market for this (and potentially other) products requires further testing and development of a value proposition and marketing strategy. The main question of Kumasi and RokitScience at Hanzehogeschool Groningen and NHLStenden Hogeschool Amsterdam is: What is the effect on the quality of beans and chocolate if fermented after the extraction of juice? How can this be optimized: comparing ‘cocoa of excellence’ fermentation and drying to traditional post-harvest practices and how can we tell the world?
Kumasi and RokitScience contribute to increasing the ownership and income of cocoa farmers, with an emphasis on women. Kumasi has a successful history of developing and marketing cocoa juice, which aims to keep as much income as possible with the farmer. RokitScience has been involved in the creation of the Rokbar: a "bean to bar" empowering chocolate bar that is marketed and made entirely by women. Kumasi and RokitScience started setting up a cocoa-fruit-lab at the cocoa-cooperative COVIMA in early 2021 in Ivory-Coast, in collaboration with Beyond Beans Foundation/ETG and Döhler and financially supported by the Sustainable-Trade-Initiative (IDH). The goal is to support the cooperative, which is led by women, with the establishment of circular cocoa juice and chocolate production and in this way increase the income of the members of the cooperative. The cocoa pod contains cocoa beans embedded in cocoa pulp. This pulp is sweet and juicy and partly needed for cocoa bean fermentation for flavor development. Residual pulp can be used for new products like drinks, marmalades and more. The collaboration in the cocoa fruit lab created momentum to try-out a more circular approach whereby the extraction of juice was linked to a shorter fermentation period of the beans, influencing quality features of both the beans and potentially the chocolate. However, to optimize the production of juicy beans further and find a market for this (and potentially other) products requires further testing and development of a value proposition and marketing strategy.The main question of Kumasi and RokitScience at Hanzeschool Groningen and Hogeschool Amsterdam is: What is the effect on the quality of beans and chocolate if fermented after the extraction of juice? How can this be optimized: comparing ‘cocoa of excellence’ fermentation and drying to traditional post-harvest practices and how can we tell the world?