This study evaluates the effectiveness of the European Union's Corporate Sustainability Reporting Directive (CSRD) in quantitatively measuring the transition of companies to a circular economy. First, using the most recent literature review on circularity metrics, a complete overview of the currently available circularity metrics is developed. Subsequently, it is determined which circularity metrics can be generated with the available quantitative datapoints of CSRD. The metrics that can be generated were analyzed on their ability to cover all circular strategies, to represent different Product-as-a-Service systems and to acknowledge the key role of Critical Raw Materials in a circular economy. The study finds that, with data disclosed under CSRD, metrics can be generated to cover all circular strategies. However, gaps remain in representing pay-per-use and pay-perperformance systems and the use of Critical Raw Materials. Recommendations are to include ‘Product utilization’ and ‘Mass of Critical Raw Materials used’ in the data disclosed under CSRD and to have an independent institution report data to enable benchmarking of performances. Finally, this study concludes with an overview of the metrics which enable to measure circular transitions using data disclosed by CSRD
DOCUMENT
A rise in global population and welfare is depleting the earth’s resources and challenging the current predominantly linear economy, following a take-make-waste pattern, calling upon a shift towards a more circular economy (Bastein and Willems, 2019; Ellen MacArthur Foundation, 2013; Lüdeke-Freund et al., 2019). The Dutch government and the European Union have set the goal/ambition to become fully circular by 2050 thus striving towards a cleaner economy and reducing the dependency on scarce resources (European Commission, 2020; Government of Netherlands, 2016).
MULTIFILE
This article investigates the phenomenon of rebound effects in relation to a transition to a Circular Economy (CE) through qualitative inquiry. The aim is to gain insights in manifestations of rebound effects by studying the Dutch textile industry as it transitions to a circular system, and to develop appropriate mitigation strategies that can be applied to ensure an effective transition. The rebound effect, known originally from the energy efficiency literature, occurs when improvements in efficiency or other technological innovations fail to deliver on their environmental promise due to (behavioral) economic mechanisms. The presence of rebound in CE contexts can therefore lead to the structural overstatement of environmental benefits of certain innovations, which can influence reaching emission targets and the preference order of recycling. In this research, the CE rebound effect is investigated in the Dutch textile industry, which is identified as being vulnerable to rebound, yet with a positive potential to avoid it. The main findings include the very low awareness of this effect amongst key stakeholders, and the identification of specific and general instances of rebound effects in the investigated industry. In addition, the relation of these effects to Circular Business Models and CE strategies are investigated, and placed in a larger context in order to gain a more comprehensive understanding about the place and role of this effect in the transition. This concerns the necessity for a new approach to how design has been practiced traditionally, and the need to place transitional developments in a systems perspective. Propositions that serve as theory-building blocks are put forward and include suggestions for further research and recommendations about dealing with rebound effects and shaping an eco-effective transition. Thomas Siderius, Kim Poldner, Reconsidering the Circular Economy Rebound effect: Propositions from a case study of the Dutch Circular Textile Valley, Journal of Cleaner Production, Volume 293, 2021, 125996, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2021.125996.
DOCUMENT
In recent years, organizations across Europe, and the Netherlands in particular, have increasingly supported efforts to enhance the sustainability of festivals such as the European Climate Pact, launched by the European Commission as part of the European Green Deal, European Festivals Association and Green Deals Circular Festivals in the Netherlands (European Union [EU], 2025). As a result, festivals across Europe are growing their environmental stewardship and serving as prototypes for wider societal transitions towards sustainability (Calvano, 2024; Irimiás et; al., 2024). However, festival organizers and other stakeholders still face challenges in developing effective communication strategies that truly activate more sustainable behaviour among festival goers (Harms et. al., 2023). Generic, one-size-fits-all approaches are often applied, yet they tend to have limited impact. This is also due to the diverse nature of music festivals, ranging from indoor to outdoor settings, single-day events to multi-day experiences, and from urban to rural locations, all of which shape the audience, context, and communication needs in unique ways (Tölkes & Butzmann, 2018; Dodds et. al., 2020). Essentially, festivals are ideal for informing, experiencing and activating sustainable behavioural change through effective communication before, during and after festivals. It is therefore crucial that a more targeted approach is utilized where messages can be tailored to make communication more effective (Temmerman & Veeckman, 2024). To address pressing sustainable and social challenges within the festival sector, NHL Stenden (NHLS) will collaborate with ESNS and Thansk on a design research project. In partnership with a network of festival organizers, industry professionals, and experts, the project will explore effective communication strategies for sustainability. The goal is to develop an actionable, research-informed roadmap that supports music festivals in enhancing their sustainability communication tailored to the sector’s dynamic and diverse nature.
The SPRONG group, originating from the CoE KennisDC Logistiek, focuses on 'Low Impact in Lastmile Logistics' (LILS). The LILS group conducts practical research with local living labs and learning communities. There is potential for more collaboration and synergy for nationwide scaling of innovations, which is currently underutilized. LILS aims to make urban logistics more sustainable and facilitate necessary societal transitions. This involves expanding the monodisciplinary and regional scope of CoE KennisDC Logistiek to a multidisciplinary and supra-regional approach, incorporating expertise in spatial planning, mobility, data, circularity, AI, behavior, and energy. The research themes are:- Solutions in scarce space aiming for zero impact;- Influencing behavior of purchasers, recipients, and consumers;- Opportunities through digitalization.LILS seeks to increase its impact through research and education beyond its regions. Collaboration between BUas, HAN, HR, and HvA creates more critical mass. LILS activities are structured around four pillars:- Developing a joint research and innovation program in a roadmap;- Further integrating various knowledge domains on the research themes;- Deepening methodological approaches, enhancing collaboration between universities and partners in projects, and innovating education (LILS knowledge hub);- Establishing an organizational excellence program to improve research professionalism and quality.These pillars form the basis for initiating and executing challenging, externally funded multidisciplinary research projects. LILS is well-positioned in regions where innovations are implemented and has a strong national and international network and proven research experience.Societal issue:Last-mile logistics is crucial due to its visibility, small deliveries, high costs, and significant impact on emissions, traffic safety, and labor hours. Lastmile activities are predicted to grow a 20% growth in the next decade. Key drivers for change include climate agreements and energy transitions, urban planning focusing on livability, and evolving retail landscapes and consumer behavior. Solutions involve integrating logistics with spatial planning, influencing purchasing behavior, and leveraging digitalization for better data integration and communication. Digital twins and the Physical Internet concept can enhance efficiency through open systems, data sharing, asset sharing, standardization, collaboration protocols, and modular load units.Key partners: Buas, HR, HAN, HvAPartners: TNO, TU Delft, Gemeente Rotterdam, Hoger Onderwijs Drechtsteden, Significance, Metropolitan Hub System, evofenedex, Provincie Gelderland, Duurzaam Bereikbaar Heijendaal, Gemeente Alphen aan den Rijn, Radboud Universiteit, I&W - DMI, DHL, TLN, Noorderpoort, Fabrications, VUB, Smartwayz, RUG, Groene Metropoolregio.
Centre of Expertise, onderdeel van Fontys