Worldwide, rivers face challenges due to human and climatic pressures. Floods, droughts, pollution, damming and hydropeaking are only a few examples of these pressures, and influence the way rivers flow. Climate change adaptation projects increase the incentive to domesticate rivers, often legitimised through expert views on (future) vulnerability and risk. This emerging river imaginary dominates current debates in many rivers in our world. River imaginaries reflect spatially bound hydrosocial territories in which multiple actors on multiple scales from multiples sectors operate to reach varying objectives. They include water flows, ecological systems, climate conditions, hydraulic infrastructure, financial means, institutional arrangements, legal frameworks and information/knowledge hubs. In the context of climate change adaptation, river imaginaries are strongly dependent on the extent to which climate change is expected to influence rivers through a mixture of probable, possible, desirable or preferable versions of a (future) river. As such, knowledge-structures of future making are scrutinised in this research by emphasising on the role of change, the role of futures and the role of experts. This presentation aims to elucidate how river imaginaries have influenced river management under climate change adaptation that resulted in large infrastructural projects. Through a study of the Meuse river, a concrete case of a imaginary came into being in the Dutch-Belgian Border-Meuse trajectory. Moreover, preliminary result from adaptation projects in the marshlands of the lower Magdalena in Colombia strengthen the dominate imaginary of technocratic and ecocentric approaches to climate change adaptation where an expert view on local knowledge dominates.
LINK
This final response to the two climate change denial papers by Shani and Arad further highlights the inaccuracies, misinformation and errors in their commentaries. The obfuscation of scientific research and the consensus on anthropogenic climate change may have significant long-term negative consequences for better understanding the implications of climate change and climate policy for tourism and create confusion and delay in developing and implementing tourism sector responses.
LINK
Climate change is one of the key societal challenges of our times, and its debate takes place across scientific disciplines and into the public realm, traversing platforms, sources, and fields of study. The analysis of such mediated debates has a strong tradition, which started in communication science and has since then been applied across a wide range of academic disciplines.So-called ‘content analysis’ provides a means to study (mass) media content in many media shapes and formats to retrieve signs of the zeitgeist, such as cultural phenomena, representation of certain groups, and the resonance of political viewpoints. In the era of big data and digital culture, in which websites and social media platforms produce massive amounts of content and network this through hyperlinks and social media buttons, content analysis needs to become adaptive to the many ways in which digital platforms and engines handle content.This book introduces Networked Content Analysis as a digital research approach, which offers ways forward for students and researchers who want to work with digital methods and tools to study online content. Besides providing a thorough theoretical framework, the book demonstrates new tools and methods for research through case studies that study the climate change debate with search engines, Twitter, and the encyclopedia project of Wikipedia.
MULTIFILE
The primary objective of the project is to identify policies for the transformation of the Norwegian tourism sector to become resilient to climate change and carbon risks; to maintain and develop its economic benefits; and to significantly reduce its emissions-intensity per unit of economic output. Collaborative partnersStiftinga Vestlandforsking, Stiftelsen Handelshoyskolen, Stat Sentralbyra, Norges Handelshoyskole, Stiftelsen Nordlandsforskning, Fjord Norge, Hurtigruten, Neroyfjorden Verdsarvpark, Uni Waterloo, Uni Queensland, Desinasjon Voss, Stift Geirangerfjorden Verdsarv, Hogskulen Pa Vestlandet.
This PD project aims to gather new knowledge through artistic and participatory design research within neighbourhoods for possible ways of addressing and understanding the avoidance and numbness caused by feelings of vulnerability, discomfort and pain associated with eco-anxiety and chronic fear of environmental doom. The project will include artistic production and suitable forms of fieldwork. The objectives of the PD are to find answers to the practice problem of society which call for art that sensitises, makes aware and helps initiate behavioural change around the consequences of climate change. Rather than visualize future sea levels directly, it will seek to engage with climate change in a metaphorical and poetic way. Neither a doom nor an overly techno-optimistic scenario seem useful to understand the complexity of flood risk management or the dangers of flooding. By challenging both perspectives with artistic means, this research hopes to counter eco-anxiety and create a sense of open thought and susceptibility to new ideas, feelings and chains of thought. Animation and humour, are possible ingredients. The objective is to find and create multiple Dutch water stories, not just one. To achieve this, it is necessary to develop new methods for selecting and repurposing existing impactful stories and strong images. Citizens and students will be included to do so via fieldwork. In addition, archival materials will be used. Archives serve as a repository for memory recollection and reuse, selecting material from the audiovisual archive of the Institute of Sound & Vision will be a crucial part of the creative work which will include two films and accompanying music.
Recent research by the renowned Royal Institution of Chartered Surveyors (RICS) shows that more than 2/3 of all CO2 is emitted during the building process and less than 1/3 during use to heat the building and the tap water. Lightweight, local and biobased materials such as biocomposites to replace concrete and fossil based cladding are in the framework of climate change, a necessity for future building. Using plant fiber in polymer composites is especially interesting for construction since natural fibers exhibit comparative good mechanical properties with small specific weight, which defines the potential for lightweight constructions. The use of renewable resources, will affect the ecosystem favorably and the production costs of construction materials could also decrease. However, one disadvantage of natural fibers in plastics is their hydrophilic properties. In construction the materials need to meet special requirements like the resistance against fluctuating weather conditions (Ticoalu et al., 2010). In contrast to synthetic fibers, the natural ones are more moisture- and UV-radiation-sensitive. That may lead to degradation of these materials and a decreasing in quality of products. (Lopez et al., 2006; Mokhothu und John, 2017) Tanatex and NPSP have approached CoE BBE/Avans to assist in a study where fibres impregnated with the (modified) Tanatex products will be used for reinforcement of thermoset biopolymers. The influence of the different Tanatex products on the moisture absorption of natural/cellulosic fibers and the adhesion on the fibers on main composite matrix will be measured. The effect of Tantex products can optimize the bonding reaction between the resin and the fibers in the (bio) composite and result to improved strength and physico-chemical properties of the biocomposite materials. (word count: 270)