The changing climate has an effect on the quality of life in our cities: heavier rainfall (resulting infloodings), longer periods of drought, reduced air and water quality and increasing temperatures incities (heat stress). Awareness about these changes among various stakeholders is of greatimportance. Every Dutch region is required to perform a stresstest indicating the effects of climatechange (o.a. flooding and heatstress) before 2020. The level of execution, area size and level ofparticipation of stakeholders, has intentionally been made flexible.To provide more insight into the approaches and best management practices to climate resilience,this article provides 3 examples of stresstests performed on several levels: single object real estatelevel, city level and national district level. The method ‘stresstestíng’, involves flood and heatstressmodeling, defines the current status of climate adaptation characteristics of an object, city or district.The stresstest form the base line and starting point for the national 3 step approach adaptationstrategy ‘analyse, ambition and action’.The 3 pilots have been evaluated as ‘successful’ by stakeholders and yielded a significant amount ofvaluable information, further improvement is recommended as increasing the participation of theprivate sector, in a ‘quadruple helix approach’. The learning points from these 3 examples ofstresstests will subsequently be implemented in the form of improved stresstesting in the nearfuture in (inter)national cities around the world.
Social media is a transformative digital technology, collapsing the “six degrees ofseparation” which have previously characterized many social networks, and breaking down many of the barriers to individuals communicating with each other. Some commentators suggest that this is having profound effects across society, that social media have opened up new channels for public debates and have revolutionized the communication of prominent public issues such as climate change. In this article we provide the first systematic and critical review of the literature on social media and climate change. We highlight three key findings from the literature: a substantial bias toward Twitter studies, the prevalent approaches to researching climate change on social media (publics, themes, and professional communication), and important empirical findings (the use of mainstream information sources, discussions of “settled science,” polarization, and responses to temperature anomalies).Following this, we identify gaps in the existing literature that should beaddressed by future research: namely, researchers should consider qualitativestudies, visual communication and alternative social media platforms to Twitter.We conclude by arguing for further research that goes beyond a focus on sciencecommunication to a deeper examination of how publics imagine climate changeand its future role in social life.
Effects of climate change in cities are evident and are expected to increase in the future, demanding adaptation. In order to share knowledge, raise awareness, and build capacity on climate adaptation, the first concept of a “ClimateCafé” has been utilized since 2012 in 25 events all over the world. In 8 years ClimateCafé grew into a field education concept involving different fields of science and practice for capacity building in climate change adaptation. This chapter describes the need, method, and results of ClimateCafés and provides tools for organizing a ClimateCafé in a context-specific case. Early ClimateCafés in the Philippines are compared with the ClimateCafé in Peru to elucidate the development of this movement, in which one of the participants of ClimateCafé Philippines 2016 became the co-organizer of ClimateCafé Peru in 2019. The described progress of ClimateCafés provides detailed information on the dynamic methodological aspects, holding different workshops. The workshops aim at generating context-specific data on climate adaptation by using tools and innovative data collection techniques addressing deep uncertainties that come with climate change adaptation. Results of the workshops show that context-specific, relevant, multidisciplinary data can be gathered in a short period of time with limited resources, which promotes the generation of ideas that can be used by local stakeholders in their local context. A ClimateCafé therefore stimulates accelerated climate action and support for adaptation solutions, from the international and the local, from the public and private sector, to ensure we learn from each other and work together for a climate resilient future. The methodology of ClimateCafé is still maturing and the evaluation of the ClimateCafés over time leads to improvements which are applied during upcoming ClimateCafés, giving a clear direction for further development of this methodology for knowledge exchange, capacity building, and bridging the gap between disciplines within climate adaptation.
This project extends the knowledge and scope of carbon footprinting in tourism. Currently, the carbon footprint of holidaymakers is available as time-series based on the CVO (Continue Vakantie Onderzoek) for the years 2002, 2005 and all between 2008 and 2018. For one year, 2009, a report has also been written about inbound tourism. The carbon footprint of business travel has not been determined, whereas there has been considerable interest throughout the years from businesses to assess and mitigate their travel footprints. There is also increasing policy attention for travel footprints. In 2018, a modified setup of the CVO caused the need to revise our statistical model and correction factors to be developed to counter the potential effects of a trend-breach. The project aimed to check and improve the current syntax for Dutch holidaymakers, adjust the one for inbound tourism, and develop a new one for Dutch business travel. The project output includes a report on the carbon footprint of Dutch holidaymakers for 2018, on inbound tourism for 2014, and on Dutch business travel for 2016, based on the CVO, inbound tourim dataset, and CZO. The project ends with a workshop with stakeholders to identify the way forward in tourism carbon footprinting in the Netherlands (tools, applications, etc.)Project partners: NRIT Research, NBTC-NIPO Research, CBS
DISTENDER will provide integrated strategies by building a methodological framework that guide the integration of climate change(CC) adaptation and mitigation strategies through participatory approaches in ways that respond to the impacts and risks of climatechange (CC), supported by quantitative and qualitative analysis that facilitates the understanding of interactions, synergies and tradeoffs.Holistic approaches to mitigation and adaptation must be tailored to the context-specific situation and this requires a flexibleand participatory planning process to ensure legitimate and salient action, carried out by all important stakeholders. DISTENDER willdevelop a set of multi-driver qualitative and quantitative socio-economic-climate scenarios through a facilitated participatory processthat integrates bottom-up knowledge and locally-relevant drivers with top-down information from the global European SharedSocioeconomic Pathways (SSPs) and downscaled Representative Concentration Pathways (RCPs) from IPCC. A cross-sectorial andmulti-scale impact assessment modelling toolkit will be developed to analyse the complex interactions over multiple sectors,including an economic evaluation framework. The economic impact of the different efforts will be analyse, including damage claimsettlement and how do sectoral activity patterns change under various scenarios considering indirect and cascading effects. It is aninnovative project combining three key concepts: cross-scale, integration/harmonization and robustness checking. DISTENDER willfollow a pragmatic approach applying methodologies and toolkits across a range of European case studies (six core case studies andfive followers) that reflect a cross-section of the challenges posed by CC adaptation and mitigation. The knowledge generated byDISTENDER will be offered by a Decision Support System (DSS) which will include guidelines, manuals, easy-to-use tools andexperiences from the application of the cases studies.
As climate change accelerates, rising sea levels pose challenges for low-lying nations like the Netherlands. Floating developments (such as homes, solar parks, and pavilions) are considered the most climate adaptative solution for the future, but the effects on the environment are unknown which is holding back this floating transformation. Since public and private partners are not able to answer questions on the effect of floating urbanisation on the environment and water quality based on speculations by models without field data, permits are given only after proof that ecological & water quality will not affected (also EU warnings ‘deteriorating’ water quality (UvW 2025, EU 2025). This proposal aims to develop an innovative autonomous docking station for aquatic drones, enhancing environmental monitoring of floating structures. Only a few monitoring campaigns measured the impact of small floating structures (small structures and only basic parameters). Traditional monitoring methods rely on manual sampling and static sensors, which are costly, labour-intensive, and provide delayed results. A new study, led by Hanze with Gemeente Rotterdam, Waternet (Gemeente Amsterdam) and Indymo, will assess the impact of new large-scale floating developments with a new method. Autonomous aquatic drones improve data resolution but face operational challenges such as battery life and data retrieval. An innovating docking station will address these issues by enabling drones to recharge, offload data, and perform continuous missions without human intervention. Advanced tools—including aquatic drones, 360-degree cameras, sonar imaging, and real-time sensors—will collect high-resolution environmental data also monitoring biodiversity and bathymetry. The proposed docking station will support real-time sensor networks, allowing for spatial and temporal data collection. It will improve the (cost) efficiency and quality of long-term environmental monitoring, providing insights into water quality dynamics and underwater ecosystems in Rotterdam and Amsterdam as an international example of floating development in the battle of climate change.