Abstract: Climate change is related with weather extremes, which may cause damages to infrastructure used by freight transport services. Heavy rainfall may lead to flooding and damage to railway lines, roads and inland waterways. Extreme drought may lead to extremely low water levels, which prevent safe navigation by inland barges. Wet and dry periods may alternate, leaving little time to repair damages. In some Western and Middle-European countries, barges have a large share in freight transport. If a main waterway is out of service, then alternatives are called for. Volume- and price-wise, trucking is not a viable alternative. Could railways be that alternative? The paper was written after the unusually long dry summer period in Europe in 2022. It deals with the question: If the Rhine, a major European waterway becomes locally inaccessible, could railways (temporarily) play a larger role in freight transport? It is a continuation of our earlier research. It contains a case study, the data of which was fed into a simulation model. The model deals with technical details like service specification route length, energy consumption and emissions. The study points to interesting rail services to keep Europe’s freight on the move. Their realization may be complex especially in terms of logistics and infrastructure, but is there an alternative?
MULTIFILE
The period leading to and immediately after the release of the IPCC's fifth series of climate change assessments saw substantial efforts by climate change denial interests to portray anthropogenic climate change (ACC) as either unproven theory or a negligible contribution to natural climate variability, including the relationship between tourism and climate change. This paper responds to those claims by stressing that the extent of scientific consensus suggests that human-induced warming of the climate system is unequivocal. Second, it responds in the context of tourism research and ACC, highlighting tourism's significant contribution to greenhouse gas emissions, as well as climate change's potential impacts on tourism at different scales. The paper exposes the tactics used in ACC denial papers to question climate change science by referring to non-peer-reviewed literature, outlier studies, and misinterpretation of research, as well as potential links to think tanks and interest groups. The paper concludes that climate change science does need to improve its communication strategies but that the world-view of some individuals and interests likely precludes acceptance. The connection between ACC and sustainability illustrates the need for debate on adaptation and mitigation strategies, but that debate needs to be grounded in scientific principles not unsupported skepticism.
LINK
This paper introduces and contextualises Climate Futures, an experiment in which AI was repurposed as a ‘co-author’ of climate stories and a co-designer of climate-related images that facilitate reflections on present and future(s) of living with climate change. It converses with histories of writing and computation, including surrealistic ‘algorithmic writing’, recombinatory poems and ‘electronic literature’. At the core lies a reflection about how machine learning’s associative, predictive and regenerative capacities can be employed in playful, critical and contemplative goals. Our goal is not automating writing (as in product-oriented applications of AI). Instead, as poet Charles Hartman argues, ‘the question isn’t exactly whether a poet or a computer writes the poem, but what kinds of collaboration might be interesting’ (1996, p. 5). STS scholars critique labs as future-making sites and machine learning modelling practices and, for example, describe them also as fictions. Building on these critiques and in line with ‘critical technical practice’ (Agre, 1997), we embed our critique of ‘making the future’ in how we employ machine learning to design a tool for looking ahead and telling stories on life with climate change. This has involved engaging with climate narratives and machine learning from the critical and practical perspectives of artistic research. We trained machine learning algorithms (i.e. GPT-2 and AttnGAN) using climate fiction novels (as a dataset of cultural imaginaries of the future). We prompted them to produce new climate fiction stories and images, which we edited to create a tarot-like deck and a story-book, thus also playfully engaging with machine learning’s predictive associations. The tarot deck is designed to facilitate conversations about climate change. How to imagine the future beyond scenarios of resilience and the dystopian? How to aid our transition into different ways of caring for the planet and each other?
Climate change adaptation has influenced river management through an anticipatory governance paradigm. As such, futures and the power of knowing the future has become increasingly influential in water management. Yet, multiple future imaginaries co-exist, where some are more dominant that others. In this PhD research, I focus on deconstructing the future making process in climate change adaptation by asking ‘What river imaginaries exist and what future imaginaries dominate climate change adaptation in riverine infrastructure projects of the Meuse and Magdalena river?’. I firstly explore existing river imaginaries in a case study of the river Meuse. Secondly, I explore imaginaries as materialised in numerical models for the Meuse and Magdalena river. Thirdly, I explore the integration and negotiation of imaginaries in participatory modelling practices in the Magdalena river. Fourthly, I explore contesting and alternative imaginaries and look at how these are mobilised in climate change adaptation for the Magdalena and Meuse river. Multiple concepts stemming from Science and Technology Studies and Political Ecology will guide me to theorise the case study findings. Finally, I reflect on my own positionality in action-research which will be an iterative process of learning and unlearning while navigating between the natural and social sciences.
Climate change is one of the most critical global challenges nowadays. Increasing atmospheric CO2 concentration brought by anthropogenic emissions has been recognized as the primary driver of global warming. Therefore, currently, there is a strong demand within the chemical and chemical technology industry for systems that can covert, capture and reuse/recover CO2. Few examples can be seen in the literature: Hamelers et al (2013) presented systems that can use CO2 aqueous solutions to produce energy using electrochemical cells with porous electrodes; Legrand et al (2018) has proven that CDI can be used to capture CO2 without solvents; Shu et al (2020) have used electrochemical systems to desorb (recover) CO2 from an alkaline absorbent with low energy demand. Even though many efforts have been done, there is still demand for efficient and market-ready systems, especially related to solvent-free CO2 capturing systems. This project intends to assess a relatively efficient technology, with low-energy costs which can change the CO2 capturing market. This technology is called whorlpipe. The whorlpipe, developed by Viktor Schauberger, has shown already promising results in reducing the energy and CO2 emissions for water pumping. Recently, studies conducted by Wetsus and NHL Stenden (under submission), in combination with different companies (also members in this proposal) have shown that vortices like systems, like the Schauberger funnel, and thus “whorlpipe”, can be fluid dynamically represented using Taylor-Couette flows. This means that such systems have a strong tendency to form vortices like fluid-patterns close to their air-water interface. Such flow system drastically increase advection. Combined with their higher area to volume ratio, which increases diffusion, these systems can greatly enhance gas capturing (in liquids), and are, thus, a unique opportunity for CO2 uptake from the air, i.e. competing with systems like conventional scrubbers or bubble-based aeration.
Family Dairy Tech Sustainable and affordable stable management systems for family dairy farms in India. An example of Dutch technology that is useful to an ?emerging economy?. Summary Problem The demand for dairy products in India is increasing. Small and medium-sized family farmers want to capitalize on this development and the Indian government wants to support them. Dutch companies offer knowledge and a wide range of products and services to improve dairy housing systems and better milk quality, in which India is interested. However, the Dutch technology is sophisticated and expensive. For a successful entry into this market, entrepreneurs have to develop affordable and robust (?frugal?) systems and products adapted to the Indian climate and market conditions. The external question is therefore: ?How can Dutch companies specialised on dairy housing systems adapt their products and offer these on the Indian market to contribute to sustainable and profitable local dairy farming??. Goal Since 2011, VHL University of Applied Sciences (VHL) is collaborating with a college and an agricultural information center Krishi Vigyan Kendra (KVK), Baramati, Pune district, Maharashtra State India. In this region many small-scale dairy farmers are active. Within this project, KVK wants to support farmers to scale up their farm form one or a few cows up to 15 to 100 cows, with a better milk quality. In this innovative project, VHL and Saxion Universities of Applied Sciences, in collaboration with KVK and several Dutch companies want to develop integrated solutions for the growing number of dairy farms in the State of Maharashtra, India. The research questions are: 1. "How can, by smart combinations of existing and new technologies, the cow-varieties and milk- and stable-management systems in Baramati, India, for family farmers be optimized in an affordable and sustainable way?" 2. "What are potential markets in India for Dutch companies in the field of stable management and which innovative business models can support entering this market?" Results The intended results are: 1. A design of an integral stable management system for small and medium-sized dairy farms in India, composed of modified Dutch technologies. 2. A cattle improvement programme for robust cows that are adapted to the conditions of Maharashtra. 3. An advice to Dutch entrepreneurs how to develop their market position in India for their technologies. 4. An advice to Indian family farmers how they can increase their margins in a sustainable way by employing innovative technologies.