Cyanobacterial blooms can be toxic to humans swimming in affected waters. According to the European Bathing Water Directive bathing waters should be closed during cyanobacterial blooms. In the Netherlands, cyanobacteria monitoring in all official bathing water locations is usually performed every two weeks during the bathing season. In face of the large temporal and spatialvariability of cyanobacterial bloom dynamics this monitoring frequency however is too low for adequate early warnings to the public.High frequency monitoring and forecasting models can provide information on cyanobacterial blooms in between the regular monitoring dates and for a few days into the future. In the H2020 project EOMORES, we have combined observational data from a spectral camera (Ecowatch) near a Dutch bathing site with fluorescence data from an underwater drone to analyse the variability ofcyanobacterial blooms at short temporal and spatial scales. The results are used in a short term forecasting model of cyanobacterial blooms (AlgaeRadar) and a 3D scum forecasting model (EWACS). The AlgaeRadar is cross-validated with biweekly data from other bathing water sites and shows improved model performance compared to an earlier version that was built with only biweekly data.For the site with high-frequency chlorophyll observations the near-real time data are assimilated in the model to further enhance the model performance. Model performance of EWACS is verified using high frequency pictures from the Ecowatch station, showing scum layers on the water. This allowed us to validate and calibrate the EWACS model. Model validation abilities were in the pastalso limited by to the patchy nature and high temporal variability of the scum layers, which was not covered by sparse scum observations. With the resulting models, early warnings for cyanobacterial blooms are more reliable than those from the current practice that are merely based on biweekly monitoring data. For the protection of public health this provides better opportunities as well.
DOCUMENT
This research involves the development of the City Scan methodology to measure, map, scan and assess different parameters that together give insight in the vulnerability of urban areas and neighborhoods. Cities are becoming increasingly vulnerable for climate change and there is an urgent need to become more resilient. The research involved the development of a set of measurement tools that can be applied in different urban neighborhoods in a lowcost low-tech approach with teams of stakeholders and practitioners. The city scan method was tested in different cities around the globe in groups of young professionals andstakeholders in rapid urban appraisals.
DOCUMENT
We, humans have our roots in pre-Anthropocene eras where we gathered skills for survival and establishing our culture. The cumulated tacit knowledge, the skills, ideas and experiences that can only be shared by personal contact and mutual trust, is evolved and cumulated during this pre-Anthropocene era. This tacit knowledge is geared to our existence and to local circumstances, it isthe indigenous knowledge necessary for local adaptation and for (cultural) perseverance. The Anthropocene era however, is characterized by rapid changes with respect to environment, climate, food sovereignty, culture and more. Our tacit knowledge needs to evolve and adapt at the same pace as changes happen in our environment and culture. Changes in the Anthropocene era are fastand disruptive thereby challenging concomitant evolution of our tacit knowledge
DOCUMENT