Introduction: Given the complexity of teaching clinical reasoning to (future) healthcare professionals, the utilization of serious games has become popular for supporting clinical reasoning education. This scoping review outlines games designed to support teaching clinical reasoning in health professions education, with a specific emphasis on their alignment with the 8-step clinical reasoning cycle and the reflective practice framework, fundamental for effective learning. Methods: A scoping review using systematic searches across seven databases (PubMed, CINAHL, ERIC, PsycINFO, Scopus, Web of Science, and Embase) was conducted. Game characteristics, technical requirements, and incorporation of clinical reasoning cycle steps were analyzed. Additional game information was obtained from the authors. Results: Nineteen unique games emerged, primarily simulation and escape room genres. Most games incorporated the following clinical reasoning steps: patient consideration (step 1), cue collection (step 2), intervention (step 6), and outcome evaluation (step 7). Processing information (step 3) and understanding the patient’s problem (step 4) were less prevalent, while goal setting (step 5) and reflection (step 8) were least integrated. Conclusion: All serious games reviewed show potential for improving clinical reasoning skills, but thoughtful alignment with learning objectives and contextual factors is vital. While this study aids health professions educators in understanding how games may support teaching of clinical reasoning, further research is needed to optimize their effective use in education. Notably, most games lack explicit incorporation of all clinical reasoning cycle steps, especially reflection, limiting its role in reflective practice. Hence, we recommend prioritizing a systematic clinical reasoning model with explicit reflective steps when using serious games for teaching clinical reasoning.
DOCUMENT
Background: Clinical reasoning skills are considered to be among the key competencies a physiotherapist should possess. Yet, we know little about how physiotherapy students actually learn these skills in the workplace. A better understanding will benefit physiotherapy education.Objectives: To explore how undergraduate physiotherapy students learn clinical reasoning skills during placements.Design: A qualitative research design using focus groups and semi-structured interviews.Setting: European School of Physiotherapy, Amsterdam, the Netherlands.Participants: Twenty-two undergraduate physiotherapy students and eight clinical teachers participated in this study.Main outcome measures: Thematic analysis of focus groups and semi-structured interviews.Results: Three overarching factors appeared to influence the process of learning clinical reasoning skills: the learning environment, the clinical teacher and the student. Preclinical training failed to adequately prepare students for clinical practice, which expected them to integrate physiotherapeutic knowledge and skills into a cyclic reasoning process. Students’ basic knowledge and assessment structure therefore required further development during the placements. Clinical teachers expected a holistic, multifactorial problem-solving approach from their students. Both students and teachers considered feedback and reflection essential to clinical learning. Barriers to learning experienced by students included time constraints, limited patient exposure and patient communication.Conclusions: Undergraduate physiotherapy students develop clinical reasoning skills through comparison of and reflection on different reasoning approaches observed in professional therapists. Over time, students learn to synthesise these different approaches into their own individual approach. Physiotherapy programme developers should aim to include a wide variety of multidisciplinary settings and patient categories in their clinical placements.
DOCUMENT
Differentiates between clinical reasoning for diagnosis, etiology, prognosis, and for interventions. Includes basic knowledge about clinical reasoning and more in-depth knowledge, illustrated with videos. Helps to understand and to critical appraise the common research designs in healthcare scientific literature.
DOCUMENT
When physicians and nurses are looking at the same patient, they may not see the same picture. If assuming that the clinical reasoning of both professions is alike and ignoring possible differences, aspects essential for care can be overlooked. Understanding the multifaceted concept of clinical reasoning of both professions may provide insight into the nature and purpose of their practices and benefit patient care, education and research. We aimed to identify, compare and contrast the documented features of clinical reasoning of physicians and nurses through the lens of layered analysis and to conduct a simultaneous concept analysis. The protocol of this systematic integrative review was published doi: 10.1136/bmjopen-2021-049862. A comprehensive search was performed in four databases (PubMed, CINAHL, Psychinfo, and Web of Science) from 30th March 2020 to 27th May 2020. A total of 69 Empirical and theoretical journal articles about clinical reasoning of practitioners were included: 27 nursing, 37 medical, and five combining both perspectives. Two reviewers screened the identified papers for eligibility and assessed the quality of the methodologically diverse articles. We used an onion model, based on three layers: Philosophy, Principles, and Techniques to extract and organize the data. Commonalities and differences were identified on professional paradigms, theories, intentions, content, antecedents, attributes, outcomes, and contextual factors. The detected philosophical differences were located on a care-cure and subjective-objective continuum. We observed four principle contrasts: a broad or narrow focus, consideration of the patient as such or of the patient and his relatives, hypotheses to explain or to understand, and argumentation based on causality or association. In the technical layer a difference in the professional concepts of diagnosis and the degree of patient involvement in the reasoning process were perceived. Clinical reasoning can be analysed by breaking it down into layers, and the onion model resulted in detailed features. Subsequently insight was obtained in the differences between nursing and medical reasoning. The origin of these differences is in the philosophical layer (professional paradigms, intentions). This review can be used as a first step toward gaining a better understanding and collaboration in patient care, education and research across the nursing and medical professions.
MULTIFILE
Purpose: This study aims to capture the complex clinical reasoning process during tailoring of exercise and dietary interventions to adverse effects and comorbidities of patients with ovarian cancer receiving chemotherapy. Methods: Clinical vignettes were presented to expert physical therapists (n = 4) and dietitians (n = 3). Using the think aloud method, these experts were asked to verbalize their clinical reasoning on how they would tailor the intervention to adverse effects of ovarian cancer and its treatment and comorbidities. Clinical reasoning steps were categorized in questions raised to obtain additional information; anticipated answers; and actions to be taken. Questions and actions were labeled according to the evidence-based practice model. Results: Questions to obtain additional information were frequently related to the patients’ capacities, safety or the etiology of health issues. Various hypothetical answers were proposed which led to different actions. Suggested actions by the experts included extensive monitoring of symptoms and parameters, specific adaptations to the exercise protocol and dietary-related patient education. Conclusions: Our study obtained insight into the complex process of clinical reasoning, in which a variety of patient-related variables are used to tailor interventions. This insight can be useful for description and fidelity assessment of interventions and training of healthcare professionals.
MULTIFILE
Purpose: Exercise therapy is an effective intervention in a variety of chronic diseases. The prescription of exercise therapy is usually directed toward an index disease. The presence of comorbidity may require adaptations to the exercise program as intended for the index disease. This paper aims to structure the clinical reasoning process of health professionals when prescribing exercise therapy for the individual patient with an index disease and comorbidity.Methods: We adapted the previously published strategy for developing guidelines and protocols on comorbidity-adapted exercise to a version that can be used for individual exercise prescription.Results: Essential steps and considerations involved in prescribing an exercise program to an individual patient with comorbidity are described. A case description is used as an example of how the proposed strategy leads to clinical decisions.Conclusions: The proposed strategy may have a role in educational and professional development. The advanced clinical expertise needed for safe and effective exercise therapy in patients with a complex health status is emphasized.Implications for RehabilitationThe presence of comorbidity may require adaptations to exercise therapy.We describe the essential steps and considerations involved in prescribing an exercise program to an individual patient with an index disease and comorbidity.The proposed strategy can be used to structure the clinical reasoning process of health professionals.
DOCUMENT
Background: Neck pain is the fourth major cause of disability worldwide but sufficient evidence regarding treatment is not available. This study is a first exploratory attempt to gain insight into and consensus on the clinical reasoning of experts in patients with non-specific neck pain. Objective: First, we aimed to inventory expert opinions regarding the indication for physiotherapy when, other than neck pain, no positive signs and symptoms and no positive diagnostic tests are present. Secondly, we aimed to determine which measurement instruments are being used and when they are used to support and objectify the clinical reasoning process. Finally, we wanted to establish consensus among experts regarding the use of unimodal interventions in patients with non-specific neck pain, i.e. their sequential linear clinical reasoning. Study design: A Delphi study.Methods:A Web-based Delphi study was conducted. Fifteen experts (teachers and researchers) participated. Results: Pain alone was deemed not be an indication for physiotherapy treatment. PROMs are mainly used for evaluative purposes and physical tests for diagnostic and evaluative purposes. Eighteen different variants of sequential linear clinical reasoning were investigated within our Delphi study. Only 6 out of 18 variants of sequential linear clinical reasoning reached more than 50% consensus. Conclusion: Pain alone is not an indication for physiotherapy. Insight has been obtained into which measurement instruments are used and when they are used. Consensus about sequential linear lines of clinical reasoning was poor.
LINK
Het proces waarmee de fysiotherapeut/kinesitherapeut tot een eigen diagnostiek komt, heet klinisch redeneren of in het Engels ‘clinical reasoning’ of ‘diagnostic reasoning’. Klinisch redeneren wordt gedefinieerd als het proces waarin de therapeut, in interactie met de patiënt en anderen (zoals familie en andere zorgprofessionals), tot een goed onderbouwde fysiotherapeutische/kinesitherapeutische diagnostiek komt waarin evidence-based of evidence-informed practice is geïntegreerd
LINK
Fully aware of the unusual timing of submitting a commentary 30 years later, we want to reflect on the June edition of the British Journal of Clinical Pharmacology (BJCP) (1993), which featured four research articles on education in clinical pharmacology and therapeutics (CPT) written by our former professor, Theo de Vries, and an editorial highlighting the imperative to improve CPT education, specifically by paying more attention to rational drug prescribing for common diseases.1–5 This plea was illustrated by five cartoons (Figure 1) and formed the basis for the World Health Organization's (WHO) Guide to Good Prescribing and its 6-step. The first four cartoons portrayed the suboptimal state of CPT education as a metaphorical ‘Clinical Pharmacology Continent’ (CPC) and a ‘General Practitioners Island’ (GPI), with a large gap between them. While clinical pharmacologists investigated new drug therapies, general practitioners frequently found themselves unprepared when making rational treatment decisions.1 The final cartoon introduced a solution: problembased learning education, depicted as a bridge connecting the continent and the island. Over the past 30 years, considerable progress has been achieved in bridging the gap. Therefore, we intend to illustrate this transformation with a similar cartoon (Figure 2).
DOCUMENT