As a consequence of climate change and urbanization, many cities will have to deal with more flooding and extreme heat stress. This paper presents a framework to maximize the effectiveness of Nature-Based Solutions (NBS) for flood risk reduction and thermal comfort enhancement. The framework involves an assessment of hazards with the use of models and field measurements. It also detects suitable implementation sites for NBS and quantifies their effectiveness for thermal comfort enhancement and flood risk reduction. The framework was applied in a densely urbanized study area, for which different small-scale urban NBS and their potential locations for implementation were assessed. The overall results show that the most effective performance in terms of flood mitigation and thermal comfort enhancement is likely achieved by applying a range of different measures at different locations. Therefore, the work presented here shows the potential of the framework to achieve an effective combination of measures and their locations, which was demonstrated on the case of the Sukhumvit area in Bangkok (Thailand). This can be particularly suitable for assessing and planning flood mitigation measures in combination with heat stress reduction.
DOCUMENT
Permeable pavements are a type of sustainable urban drainage system (SUDS)technique that are used around the world to infiltrate and treat urban Stormwater runoff and to minimize runoff volumes. Urban stormwater runoff contains significant concentrations of suspended sediments that can cause clogging and reduce the infiltration capacity and effectiveness of permeable pavements. It is important for stormwater managers to be able to determine when the level of clogging has reached an unacceptable level, so that they can schedule maintenance or replacement activities as required. Newly-installed permeable pavements in the Netherlands must demonstrate a minimum infiltration capacity of 194 mm/h (540 l/s/ha). Other commonly used permeable pavement guidelines in the Netherlands recommend that maintenance is undertaken on permeable pavements when the infiltration falls below 0.50 m/d (20.8 mm/h). This study used a newly-developed, full-scale infiltrationtest procedure to evaluate the infiltration performance of eight permeable pavements in five municipalities that had been in service for over seven years in the Netherlands. The determined infiltration capacities vary between 29 and 342 mm/h. Two of the eight pavements show an infiltration capacity higher than 194 mm/h, and all infiltration capacities are higher than 20.8 mm/h. According to the guidelines, this suggests that none of the pavements tested in this study would require immediate maintenance.
DOCUMENT
Climate change and changing land use challenge the livability and flood safety of Dutch cities. One option cities have to become more climate-proof is to increase infiltration of stormwater into soil through permeable pavement and thus reduce discharge of stormwater into sewer systems. To analyze the market receptivity for permeable pavements in the Netherlands, this article focuses on the perception of end-users towards key transition factors in the infrastructure transformation processes. Market receptivity was studied on two levels: (1) on the system level, by analyzing 20 key factors in the Dutch urban water sector that enable wider application of permeable pavements; and (2) on the technology level, by analyzing 12 key factors that explain why decision makers select permeable pavements or not. Results show that trust between cooperating partners was perceived as the system level key factor that needs to be improved most to facilitate the wider uptake of permeable pavements. Additionally, the association of end-users with permeable pavement, particularly their willingness to apply these technologies and their understanding of what kinds of benefits these technologies could bring, was regarded the most important receptivity attribute. On the technology level, the reliability of permeable pavement was regarded as the most important end-user consideration for selecting this technology.
DOCUMENT
The EU Climate and Energy Policy Framework targets a 40% reduction in Greenhouse Gases (GHGs) emission by companies (when compared to 1990’s values) in 2030 [1]. Preparing for that future, many companies are working to reach climate neutrality in 2030. For water and wastewater treatment plants aeration processes could represent up to 70% of the whole energy consumption of the plant. Thus, a process which must be carefully evaluated if climate neutrality is a target. VortOx is an alternative to reduce power consumption in aeration processes. It is structured to test the applicability of geometrically constrained vortices in a hyperbolic funnel (aka “Schauberger”- funnel) as an innovative aeration technique for this industry. Recent investigations have shown that such systems allow an average of 12x more oxygen transfer coefficients (KLa) than that of comparable methods like air jets or impellers [10]. However, the system has a relatively small hydraulic retention time (HRT), which compromises its standard oxygen transfer ratio (SOTR). Additionally, so far, the system has only been tested in pilot (lab) scale. Vortox will tackle both challenges. Firstly, it will test geometry and flow adaptations to increase HRT keeping the same KLa levels. And secondly, all will be done using a real scale hyperbolic funnel and real effluent from Leeuwarden’s wastewater treatment plant demo-site. If proven feasible, Vortox can be a large step towards climate neutral water and wastewater treatment systems.