Discussions on policy and management initiatives to facilitate individuals throughout working careers take place without sufficient insight into how career paths are changing, how these changes are related to a modernization of life course biographies, and whether this leads to increased labour market transitions. This paper asks how new, flexible labour market patterns can best be analyzed using an empirical, quantitative approach. The data used are from the career module of the Panel Study of Belgian Households (PSBH). This module, completed by almost 4500 respondents consists of retrospective questions tracing lengthy and even entire working life histories. To establish any changes in career patterns over such extended periods of time, we compare two evolving methodologies: Optimal Matching Analysis (OMA) and Latent Class Regression Analysis (LCA). The analyses demonstrate that both methods show promising potential in discerning working life typologies and analyzing sequence trajectories. However, particularities of the methods demonstrate that not all research questions are suitable for each method. The OMA methodology is appropriate when the analysis concentrates on the labour market statuses and is well equipped to make clear and interpretable differentiations if there is relative stability in career paths during the period of observation but not if careers become less stable. Latent Class has the strength of adopting covariates in the clustering allowing for more historically connected types than the other methodology. The clustering is denser and the technique allows for more detailed model fitting controls than OMA. However, when incorporating covariates in a typology, the possibilities of using the typology in later, causal, analyses is somewhat reduced.
MULTIFILE
As every new generation of civil aircraft creates more on-wing data and fleets gradually become more connected with the ground, an increased number of opportunities can be identified for more effective Maintenance, Repair and Overhaul (MRO) operations. Data are becoming a valuable asset for aircraft operators. Sensors measure and record thousands of parameters in increased sampling rates. However, data do not serve any purpose per se. It is the analysis that unleashes their value. Data analytics methods can be simple, making use of visualizations, or more complex, with the use of sophisticated statistics and Artificial Intelligence algorithms. Every problem needs to be approached with the most suitable and less complex method. In MRO operations, two major categories of on-wing data analytics problems can be identified. The first one requires the identification of patterns, which enable the classification and optimization of different maintenance and overhaul processes. The second category of problems requires the identification of rare events, such as the unexpected failure of parts. This cluster of problems relies on the detection of meaningful outliers in large data sets. Different Machine Learning methods can be suggested here, such as Isolation Forest and Logistic Regression. In general, the use of data analytics for maintenance or failure prediction is a scientific field with a great potentiality. Due to its complex nature, the opportunities for aviation Data Analytics in MRO operations are numerous. As MRO services focus increasingly in long term contracts, maintenance organizations with the right forecasting methods will have an advantage. Data accessibility and data quality are two key-factors. At the same time, numerous technical developments related to data transfer and data processing can be promising for the future.
Machine learning models have proven to be reliable methods in classification tasks. However, little research has been conducted on the classification of dwelling characteristics based on smart meter and weather data before. Gaining insights into dwelling characteristics, which comprise of the type of heating system used, the number of inhabitants, and the number of solar panels installed, can be helpful in creating or improving the policies to create new dwellings at nearly zero-energy standard. This paper compares different supervised machine learning algorithms, namely Logistic Regression, Support Vector Machine, K-Nearest Neighbor, and Long-short term memory, and methods used to correctly implement these algorithms. These methods include data pre-processing, model validation, and evaluation. Smart meter data, which was used to train several machine learning algorithms, was provided by Groene Mient. The models that were generated by the algorithms were compared on their performance. The results showed that the Long-short term memory performed the best with 96% accuracy. Cross Validation was used to validate the models, where 80% of the data was used for training purposes and 20% was used for testing purposes. Evaluation metrics were used to produce classification reports, which indicates that the Long-short term memory outperforms the compared models on the evaluation metrics for this specific problem.