The 'AgroCycle' project investigates whether a cooperation of farms can become self-sufficient in energy and fertilization by using manure and organic waste streams for the production of energy, green fuel and green fertilizers by means of anaerobic digestion (AD). In the project, the project partners aim to link the nutrient cycle (from manure to digestate to green fertilizer) to a self-sufficient energy system (biomass to biogas to green fuel for processing the land) through the combined production of biogas and green fertilizers. The financial feasibility of a bio-digester is highly dependent on the use and economic value of the digestate. This combined approach increases both feasibility and sustainability (environmental impacts and CO2 emissions). To explore the feasibility of the aforementioned concept, use is made of the existing 'BioGas simulator' model developed by Hanze UAS to simulate the technical process of decentralized production of biogas and the economic cost.
In order to gain a more mature share in the future energy supply, green gas supply chains face some interesting challenges. In this thesis green gas supply chains, based on codigestion of cow manure and maize, are considered. The produced biogas is upgraded to natural gas quality and injected into the existing distribution gas grid and thus replacing natural gas. Literature research showed that relatively much attention has been paid up to now to elements of such supply chains. Research into digestion technology, agricultural aspects of (energy) crops and logistics of biomass are examples of this. This knowledge is indispensable, but how this knowledge should be combined to help understand how future green gas systems may look like, remains a white spot in the current knowledge. This thesis is an effort to fill this gap. A practical but sound way of modeling green gassupply chains was developed, taking costs and sustainability criteria into account. The way such supply chains can deal with season dependent gas demand was also investigated. This research was further expanded into a geographical model to simulate several degrees of natural gas replacement by green gas. Finally, ways to optimize green gas supply chains in terms of energy efficiency and greenhouse gas reduction were explored.
Energy efficiency, greenhouse gas reduction and cost price of a green gas supply chain were evaluated. This supply chain is based on co-digestion of dairy cattle manure and maize, biogas upgrading and injection into a distribution gas grid. A defined reference scenario reflects the current state of practice, assuming that input energy is from fossil origin. Possible improvements of this reference scenario were investigated. For this analysis two new definitions for energy input-output ratio were introduced; one based on input of primary energy from all origin, and one related to energy from fossil origin only. Switching from fossil to green electricity significantly improves the energy efficiency (both definitions) and greenhouse gas reduction. Preventing methane leakage during digestion and upgrading, and re-using heat within the supply chain show smaller improvements on these parameters as well as on cost price. A greenhouse gas reduction of more than 80 % is possible with current technology. To meet this high sustainability level, multiple improvement options will have to be implemented in the green gas supply chain. This will result in a modest decrease of the green gas cost price.