Bioplastics are gaining interest as an alternative to fossil-based plastics. In addition, biodegradable bioplastics may yield biogas after their use, giving an additional benefit. However, the biodegradability time in international norms (35 days) far exceeds processing times in anaerobic digestion facilities (21 days). As the bioplastic packaging does not indicate the actual biodegradability, it is important to understand the time required to biodegrade bioplastic if it ends up in the anaerobic digestion facility along with other organic waste. For this work, cellulose bioplastic film and polylactic acid (PLA) coffee capsules were digested anaerobically at 55 ℃ for 21 days and 35 days, which are the retention times for industrial digestors and as set by international norms, respectively. Different sizes of bioplastics were examined for this work. Bioplastic film produced more biogas than bioplastic coffee capsules. The biodegradability of bioplastic was calculated based on theoretical biogas production. With an increase in retention time, biogas production, as well as biodegradability of bioplastic, increased. The biodegradability was less than 50% at the end of 35 days for both bioplastics, suggesting that complete degradation was not achieved, and thus, the bioplastic would not be suitable for use in biogas digesters currently in use.
LINK
European Union’s vulnerability to climate change stretches far beyond its borders because many of its economic sectors, such as meat and dairy, use raw materials sourced from far afield. Cross-border climate vulnerability is a relatively new subject in scientific literature, while of high societal and economic relevance. We quantify these climate vulnerabilities with a focus on drought risk and assessed them for 2030, 2050, 2085 and for RCP 2.6 and 6.0 climate scenarios. Here we find that more than 44% of the EU agricultural imports will become highly vulnerable to drought in future because of climate change. The drought severity in production locations of the agricultural imports in 2050 will increase by 35% compared to current levels of drought severity. This is particularly valid for imports that originate from Brazil, Indonesia, Vietnam, Thailand, India and Turkey. At the same time, imports from Russia, Nigeria, Peru, Ecuador, Uganda and Kenya will be less vulnerable in future. We also report that the climate vulnerabilities of meat and dairy, chocolate (cocoa), coffee, palm oil-based food and cosmetic sectors mainly lie outside the EU borders rather than inside.
MULTIFILE
On a yearly basis 120 million kg of spent coffee ground (SCG) is disposed as waste. Two partners in the project have the intension to refine the valuable compounds from this coffee residue. One of these compounds is the group of melanoidins. It is proven that these natural polymers, with polyphenols incorporated, can be applied as colourant to textiles. These colourant compounds can be extracted from the SCG. In this project an industrial feasible dye recipe for SCG extract to cotton will be developed. This twostep dye method consists of a mordanting step and a colour uptake step. Both will be optimised to colour intensity and light and wash fastness. Parameters as cycle time and energy and water consumption, will be take into account to make the dye recipe applicable for industrial standards. Chemical analysis of mordant compounds (tannins) and colourants (polyphenols) will be carried out to quantify and qualify the uptake by cotton. With the results of this project, the partners will be able to support their customers of the SCG extract with a scientific based advise about the application as a textile dye to ensure a solid market acceptance of SCG extract. With the SCG extract as a professional biobased colorant in the market, companies in textile industry will have a wider choice in using environmental friendly products. At the end, this will lead to complete biodegradable products for consumers.
On a yearly basis 120 million kg of spent coffee ground (SCG) is disposed as waste. Two partners in the project have the intension to refine the valuable compounds from this coffee residue. One of these compounds is the group of melanoidins. It is proven that these natural polymers, with polyphenols incorporated, can be used as a colorant for wool. The polyphenols show antioxidant ability and high levels of ultraviolet radiation blocking which will give extra benefits when the SCG extract is applied as a colorant in smart packaging. In this project the extraction process is refined and industrial dyeing methods for wool, cotton and paper are evaluated. SCG colored samples are tested for color intensity and light and wash fastness. For the best coloring results commercial potential will be evaluated in a market study. Prospects in textile, paper and packaging industries are contacted to share their view about the possible applications of SCG extracts as colorants. The results are used in the business plan of the SCG refinery plant. With the SCG extract as a professional biobased colorant in the market, companies in textile, paper and packaging industry will have a wider choice in using environmental friendly products. At the end, this will lead to complete biodegradable products for consumers.
The transition to a circular economy requires innovative digital solutions to extend the lifespan of electrical and electronic appliances (EEA) and reduce the volume of waste generated by this product stream. Digital Product Passports (DPPs) make product and usage information accessible to supply chain partners and serve as a crucial tool for optimising circular strategies. DPP data on performed maintenance, upgrades, (sensor) data on EEA usage, diagnostics and repairs support supply chain actors throughout the product lifecycle in carrying out their circular responsibilities. This project focuses on the application of DPPs in the "Middle-of-Life" phase of EEA products, specifically dishwashers and coffee machines. The central research question is: How can the EEA supply chain design and actively manage a DPP in a way that creates value for all stakeholders in the Middle-of-Life phase and contributes to product life extension and circularity? The applied methodology is based on Design Science Research (DSR) and Co-design, in which manufacturers, repair services, collection partners and DPP solution providers collaborate on a practice-oriented implementation. In co-design sessions, the requirements and functionalities of DPPs are defined based on identified circular roles and related information needs. These are then translated into a DPP "Proof of Concept", which is tested by partners across the electronics value chain. The intended outcome is an implemented and validated DPP concept that unlocks product data, optimises circular processes, and strengthens collaboration within the supply chain. This project contributes to strategic policy agendas on digitalisation and circularity and offers a blueprint for the broader application of DPPs in the EEA sector. The project partners – ATAG Benelux, E-Care, Beekman B.V., Holland Circulair, Eviden, Saxion University of Applied Sciences, and HU University of Applied Sciences Utrecht – combine their expertise to develop a future-proof, scalable and practice-based DPP solution.