This paper conducted a preliminary study of reviewing and exploring bias strategies using a framework of a different discipline: change management. The hypothesis here is: If the major problem of implicit bias strategies is that they do not translate into actual changes in behaviors, then it could be helpful to learn from studies that have contributed to successful change interventions such as reward management, social neuroscience, health behavioral change, and cognitive behavioral therapy. The result of this integrated approach is: (1) current bias strategies can be improved and new ones can be developed with insight from adjunct study fields in change management; (2) it could be more sustainable to invest in a holistic and proactive bias strategy approach that targets the social environment, eliminating the very condition under which biases arise; and (3) while implicit biases are automatic, future studies should invest more on strategies that empower people as “change agents” who can act proactively to regulate the very environment that gives rise to their biased thoughts and behaviors.
Abstract Background: Patients with glioma often suffer from cognitive deficits. Physical exercise has been effective in ameliorating cognitive deficits in older adults and neurological patients. This pilot randomized controlled trial (RCT) explored the possible impact of an exercise intervention, designed to improve cognitive functioning in glioma patients, regarding cognitive test performance and patient-reported outcomes (PROs). Methods: Thirty-four clinically stable patients with World Health Organization grades II/III glioma were randomized to a home-based remotely coached exercise group or an active control group. Patients exercised 3 times per week for 20-45 minutes, with moderate to vigorous intensity, during 6 months. At baseline and immediate follow-up, cognitive performance and PROs were assessed with neuropsychological tests and questionnaires, respectively. Linear regression analyses were used to estimate effect sizes of potential between-group differences in cognitive performance and PROs at 6 months. Results: The exercise group (n = 21) had small- to medium-sized better follow-up scores than the control group (n = 11) on several measures of attention and information processing speed, verbal memory, and executive function, whereas the control group showed a slightly better score on a measure of sustained selective attention. The exercise group also demonstrated small- to medium-sized better outcomes on measures of self-reported cognitive symptoms, fatigue, sleep, mood, and mental health-related quality of life. Conclusions: This small exploratory RCT in glioma patients provides a proof of concept with respect to improvement of cognitive functioning and PROs after aerobic exercise, and warrants larger exercise trials in brain tumor patients.