In the Netherlands there is discussion about the best way to teach mathematics, especially in the case of primary school students. Being able to identify and understand pupils’ multiple problem solving strategies is one of the pillars of pedagogy. However, it is very demanding for teachers, since it requires to notice and analyze pupils’ mathematical thinking and to understanding their actions. The skill to notice and analyze a student’s mathematical thinking is usually not emphasized in Dutch primary school teacher training. It is important to find ways to help teacher-students to analyze student mathematical reasoning, and to learn to recognize the importance of such analysis. Sherin and van Es used the concept of video clubs to help teachers in US schools to notice and analyze their students’ mathematical thinking. In such video clubs, students jointly discuss their filmed lessons. This leads to the following research question:How can video clubs be used to teach students who are learning to become primary school teachers to analyze their pupils’ mathematical thinking and to learn to recognize the importance of such analysis?This paper describes a study that monitors a video club with four participants.
LINK
Introduction: Given the complexity of teaching clinical reasoning to (future) healthcare professionals, the utilization of serious games has become popular for supporting clinical reasoning education. This scoping review outlines games designed to support teaching clinical reasoning in health professions education, with a specific emphasis on their alignment with the 8-step clinical reasoning cycle and the reflective practice framework, fundamental for effective learning. Methods: A scoping review using systematic searches across seven databases (PubMed, CINAHL, ERIC, PsycINFO, Scopus, Web of Science, and Embase) was conducted. Game characteristics, technical requirements, and incorporation of clinical reasoning cycle steps were analyzed. Additional game information was obtained from the authors. Results: Nineteen unique games emerged, primarily simulation and escape room genres. Most games incorporated the following clinical reasoning steps: patient consideration (step 1), cue collection (step 2), intervention (step 6), and outcome evaluation (step 7). Processing information (step 3) and understanding the patient’s problem (step 4) were less prevalent, while goal setting (step 5) and reflection (step 8) were least integrated. Conclusion: All serious games reviewed show potential for improving clinical reasoning skills, but thoughtful alignment with learning objectives and contextual factors is vital. While this study aids health professions educators in understanding how games may support teaching of clinical reasoning, further research is needed to optimize their effective use in education. Notably, most games lack explicit incorporation of all clinical reasoning cycle steps, especially reflection, limiting its role in reflective practice. Hence, we recommend prioritizing a systematic clinical reasoning model with explicit reflective steps when using serious games for teaching clinical reasoning.
Collaborative learning is not a new teaching and learning approach; it has been around since the 1970s and is an evidence-based practice that has been proven to be effective time after time. Therefore, instead of reinventing the wheel or only relying on best practices or anecdotal evidence of what works and what doesn’t, especially when designing Collaborative Online International Learning (COIL) environments, educators might find it useful to make use of existing collaborative learning instructional design elements. These elements have been scientifically proven to be effective and can be applied in both the physical and online international classroom.
LINK