For almost 25 years, the goal of the RoboCup has been to build soccer robots capable of winning against the FIFA World Champion of 2050. To foster the participation of the next generation of roboticists, the RoboCupJunior competition takes place in parallel and provides a similar challenge of appropriate difficulty for high school students. RoboCupJunior has three main categories: Soccer, Rescue and OnStage. For the Soccer category, participants need to design, build and program a team of autonomous robots to play soccer against an opponent team of robots. The competition is physical in nature, since it assumes physical robots playing against one another. In 2020 and 2021, the COVID-19 pandemic has made it difficult for a competition of this type to take place, due to obvious restrictions on physical gatherings. To allow for some sort of participation, and inspired by positive experience of the larger RoboCup community, the Organizing Committee of RoboCupJunior Soccer has explored porting a portion of the challenge to a simulated environment. Many of the existing environments, however, are built for higher education/research teams competitions or research, making them complex to deploy and generally unsuitable for high school students. In this paper we present the development of SoccerSim, a simulated environment for RoboCupJunior Soccer, based on the Webots open-source robotics simulator. We also discuss how the participation of students was key for its development and present a summary of the competition rules. We further describe the case study of utilizing SoccerSim first as a testbed for a Demo competition, and later as part of RoboCup Worldwide 2021. The participation of more than 60 teams from over 20 countries suggests that SoccerSim provides an affordable alternative to physical robotics platforms, while being stable enough to support a diverse userbase. The experience of using SoccerSim at RoboCupJunior Worldwide 2021 suggests that a simulated environment significantly lowers the barrier to entry, as evidenced by the participation of many teams that have not participated before. To make it easy for similar competitions to take place in the future, we made the code of SoccerSim available as open-source, as well as the associated tooling required for using it in a tournament.
DOCUMENT
The use of robots as educational tools provides a stimulating environment for students. Some robotics competitions focus on primary and secondary school aged children, and serve as motivation for students to get involved in educational robotics activities. Although very appealing, many students cannot participate on robotics competitions because they cannot afford robotics kits. Hence, several students have no access to educational robotics, especially on developing countries. To minimize this problem and contribute to education equality, we have created RoSoS Robot Soccer Simulator, in which students program virtual robots in a similar way that they would program their real ones. In this chapter we explain some technical details of RoSoS and discuss the implementation of a new league for the robotics competitions: Junior Soccer Simulation league (JSS). Because soccer is the most popular sport in the world, we believe JSS will be a strong motivator for students to get involved with robotics.
DOCUMENT
Over the last few decades the power struggle between nations to win medals in major international competitions has intensified. This has led to national sports organisations and governments throughout the world spending increasing sums of money on elite sport. Several nations have indeed shown that accelerated funding in elite sport can lead to an increase of medals won at the Olympics. Nevertheless, in spite of increasing competition and the homogenisation of elite sports systems, the optimum strategy for delivering international success is still unclear. There is no model for comparing, and increasing, the efficiency and effectiveness of elite sport investments and management systems. This makes it difficult for sports managers and policy makers to prioritise and to make the right choices in elite sports policy. This book presents an international comparison of elite sport policies in six nations (Belgium, Canada, Italy, the Netherlands, Norway and United Kingdom). Over 1,400 athletes, coaches and performance directors in these nations have provided information on the climate to perform at the highest level of elite sport in their country. Over a hundred criteria are evaluated and compared using a scoring system in nine sport policy areas. This book is aimed at sports professionals, academics and politicians seeking a better understanding of the factors that lead to international sporting success and seeking insights in future sport policy developments.
DOCUMENT
Adversarial thinking is essential when dealing with cyber incidents and for finding security vulnerabilities. Capture the Flag (CTF) competitions are used all around the world to stimulate adversarial thinking. Jeopardy-style CTFs, given their challenge-and-answer based nature, are used more and more in cybersecurity education as a fun and engaging way to inspire students. Just like traditional written exams, Jeopardy-style CTFs can be used as summative assessment. Did a student provide the correct answer, yes or no. Did the participant in the CTF competition solve the challenge, yes or no. This research project provides a framework for measuring the learning outcomes of a Jeopardy-style CTF and applies this framework to two CTF events as case studies. During these case studies, participants were tested on their knowledge and skills in the field of cybersecurity and queried on their attitude towards CTF education. Results show that the main difference between traditional written exam and a Jeopardy-style CTF is the way in which questions a re formulated. CTF education is stated to be challenging and fun because questions are formulated as puzzles that need to be solved in a gamified and competitive environment. Just like traditional written exams, no additional insight into why the participant thinks the correct answer is the correct answer has been observed or if the participant really did learn anything new by participating. Given that the main difference between a traditional written exam and a Jeopardy-style CTF is the way in which questions are formulated, learning outcomes can be measured in the same way. We can ask ourselves how many participants solved which challenge and to which measurable statements about “knowledge, skill and attitude” in the field of cybersecurity each challenge is related. However, when mapping the descriptions of the quiz-questions and challenges from the two CTF events as case studies to the NICE framework on Knowledge, Skills and Abilities in cybersecurity, the NICE framework did not provide us with detailed measurable statements that could be used in education. Where the descriptions of the quiz-questions and challenges were specific, the learning outcomes of the NICE framework are only formulated in a quite general matter. Finally, some evidence for Csíkszentmihályi’s theory of Flow has been observed. Following the theory of Flow, a person can become fully immersed in performing a task, also known as “being in the zone” if the “challenge level” of the task is in line with the person’s “skill level”. The persons mental state towards a task will be different depending on the challenge level of the task and required skill level for completing it. Results show that participants state that some challenges were difficult and fun, where other challenges were easy and boring. As a result of this9 project, a guide / checklist is provided for those intending to use CTF in education.
DOCUMENT
The use of robots as educational tools provide a stimulating environment for students. Some robotics competitions focus on primary and secondary school aged children, and serve as a motivation factor for students to get involved in educational robotics activities. But, in most competitions students are required to deal with robot design, construction and programming. Although very appealing, many students cannot participate on robotics competitions because they cannot afford robotics kits and their school do not have the necessary equipment. Because of that, several students have no access to educational robotics, especially on developing countries. To minimize this problem and contribute to education equality, we present a proposal for a new league for the robotics competitions: The Junior Soccer Simulation league (JSS). In such a league, students program virtual robots in a similar way that they would program their real ones. Because there is no hardware involved, costs are very low and participants can concentrate on software development and robot's intelligence improvement. Finally, because soccer is the most popular sport in the world, we believe JSS will be a strong motivator for students to get involved with robotics. In this paper we present the simulator that was developed (ROSOS) and discuss some ideas for the adoption of a Junior Soccer Simulation competition.
DOCUMENT
Accurate localization in autonomous robots enables effective decision-making within their operating environment. Various methods have been developed to address this challenge, encompassing traditional techniques, fiducial marker utilization, and machine learning approaches. This work proposes a deep-learning solution employing Convolutional Neural Networks (CNN) to tackle the localization problem, specifically in the context of the RobotAtFactory 4.0 competition. The proposed approach leverages transfer learning from the pre-trained VGG16 model to capitalize on its existing knowledge. To validate the effectiveness of the approach, a simulated scenario was employed. The experimental results demonstrated an error within the millimeter scale and rapid response times in milliseconds. Notably, the presented approach offers several advantages, including a consistent model size regardless of the number of training images utilized and the elimination of the need to know the absolute positions of the fiducial markers.
DOCUMENT
To help students reach their full potential, additional challenges beyond the standard curriculum may be necessary for some. In Dutch secondary vocational education, education for talented students is organized in two prevalent ways: through participation in honors programs that foster community building and through professional competitions. Given the apparent contradiction and potential tension between community building and competition, this research explores these concepts and their interplay to create optimal learning environments for talented students. A scoping review was conducted, analyzing 101 studies and identifying six overarching themes: Added Value, Characteristics & Conditions, Design & Development, Collaboration, Membership & the Role of Actors, and Enhanced Learning & the Role of Actors. Findings confirmed the benefits of both community building and competition in honors education. Despite a literature gap regarding their combination, this review provides insights into how these concepts can be merged to create enriching learning environments by synthesizing the themes.
DOCUMENT
This study explored how dressage judges focus their attention on different parts of horse-rider performances during competitions. By using eye tracking technology, we analyzed where judges look and how long they focus on specific areas. We included twenty judges with varying levels of experience and recorded their eye movements as they assessed Grand Prix dressage tests on video. We found that all judges mostly looked at the front of the horse compared to the rider or other parts of the horse. However, advanced level judges paid more attention to the horse’s feet, while judges engaged at the lower level of the sport looked more at the rider. These patterns suggest that judges concentrate on a few highly relevant areas, depending on the underlying criteria for evaluating performances. Understanding judges’ visual patterns and how they interpret what they see can help improve judging, making it more accurate and transparent, ensuring more consistent evaluations in competition and improving equine welfare.
LINK