ObjectivesBody weight and muscle mass loss following an acute hospitalization in older patients may be influenced by malnutrition and sarcopenia among other factors. This study aimed to assess the changes in body weight and composition from admission to discharge and the geriatric variables associated with the changes in geriatric rehabilitation inpatients.DesignRESORT is an observational, longitudinal cohort.Setting and ParticipantsGeriatric rehabilitation inpatients admitted to geriatric rehabilitation wards at the Royal Melbourne Hospital, Melbourne, Australia (N = 1006).MethodsChanges in body weight and body composition [fat mass (FM), appendicular lean mass (ALM)] from admission to discharge were analyzed using linear mixed models. Body mass index (BMI) categories, (risk of) malnutrition (Global Leadership Initiative on Malnutrition), sarcopenia (European Working Group on Sarcopenia in Older People), dependence in activities of daily living (ADL), multimorbidity, and cognitive impairment were tested as geriatric variables by which the changes in body weight and composition may differ.ResultsA total of 1006 patients [median age: 83.2 (77.7–88.8) years, 58.5% female] were included. Body weight, FM (kg), and FM% decreased (0.30 kg, 0.43 kg, and 0.46%, respectively) and ALM (kg) and ALM% increased (0.17 kg and 0.33%, respectively) during geriatric rehabilitation. Body weight increased in patients with underweight; decreased in patients with normal/overweight, obesity, ADL dependence and in those without malnutrition and sarcopenia. ALM% and FM% decreased in patients with normal/overweight. ALM increased in patients without multimorbidity and in those with malnutrition and sarcopenia; ALM% increased in patients without multimorbidity and with sarcopenia.Conclusions and ImplicationsIn geriatric rehabilitation, body weight increased in patients with underweight but decreased in patients with normal/overweight and obesity. ALM increased in patients with malnutrition and sarcopenia but not in patients without. This suggests the need for improved standard of care independent of patients’ nutritional risk.
The retirement phase is an opportunity to integrate healthy (nutrition/exercise) habits into daily life. We conducted this systematic review to assess which nutrition and exercise interventions most effectively improve body composition (fat/muscle mass), body mass index (BMI), and waist circumference (WC) in persons with obesity/overweight near retirement age (ages 55–70 y). We conducted a systematic review and network meta-analysis (NMA) of randomized controlled trials, searching 4 databases from their inception up to July 12, 2022. The NMA was based on a random effects model, pooled mean differences, standardized mean differences, their 95% confidence intervals, and correlations with multi-arm studies. Subgroup and sensitivity analyses were also conducted. Ninety-two studies were included, 66 of which with 4957 participants could be used for the NMA. Identified interventions were clustered into 12 groups: no intervention, energy restriction (i.e., 500–1000 kcal), energy restriction plus high-protein intake (1.1–1.7 g/kg/body weight), intermittent fasting, mixed exercise (aerobic and resistance), resistance training, aerobic training, high protein plus resistance training, energy restriction plus high protein plus exercise, energy restriction plus resistance training, energy restriction plus aerobic training, and energy restriction plus mixed exercise. Intervention durations ranged from 8 wk to 6 mo. Body fat was reduced with energy restriction plus any exercise or plus high-protein intake. Energy restriction alone was less effective and tended to decrease muscle mass. Muscle mass was only significantly increased with mixed exercise. All other interventions including exercise effectively preserved muscle mass. A BMI and/or WC decrease was achieved with all interventions except aerobic training/resistance training alone or resistance training plus high protein. Overall, the most effective strategy for nearly all outcomes was combining energy restriction with resistance training or mixed exercise and high protein. Health care professionals involved in the management of persons with obesity need to be aware that an energy-restricted diet alone may contribute to sarcopenic obesity in persons near retirement age.This network meta-analysis is registered at https://www.crd.york.ac.uk/prospero/ as CRD42021276465.
MULTIFILE
Background: A positive association between obesity based on body mass index (BMI) and periodontitis has been reported. Fat tissue-related systemic inflammation acts as the link to periodontal comorbidities of obesity. However, the BMI is unable to distinguish fat and fat-free tissues. More precise measures are required to evaluate body composition, including fat and fat-free tissues. This study aimed to determine the sex differences in the association between dual-energy x-ray absorptiometry (DXA)-measured body composition (i.e., fat mass and muscle mass) and phenotypes with periodontitis. Methods: Cross-sectional data of 3892 participants from the National Health and Nutrition Examination Survey (NHANES) study 2011‒2014 were analyzed. Adiposity indices (fat mass index [FMI] and percentage body fat [%BF]) and muscle mass index (MMI) were calculated. The participants were categorized by the quintiles of FMI, MMI, and %BF. Body composition phenotypes were categorized as: low adiposity-low muscle (LA-LM), low adiposity-high muscle (LA-HM), high adiposity-low muscle (HA-LM), or high adiposity-high muscle (HA-HM), respectively. Periodontitis was defined by the CDC/AAP (Centers for Disease Control and Prevention/American Academy of Periodontology) criteria. Multivariable logistic regression analysis was conducted, stratified by sex. We further adjusted for white blood cell (WBC) counts in the sensitivity analysis. Results: Restricted cubic splines revealed non-linear associations between body composition indices and periodontitis risk. Women with a higher FMI (odds ratio for Q5 vs. Q1 [ORQ5vs1] = 1.787, 95% confidence interval: 1.209–2.640) or %BF (ORQ5vs1 = 2.221, 1.509–3.268) had increased odds of periodontitis. In addition, women with HA-LM phenotype were more likely to develop periodontitis (OR = 1.528, 1.037–2.252). Interestingly, the WBC count, a systemic inflammatory biomarker, attenuated these associations. No statistically significant associations were found in men. Conclusions: The association between DXA-measured body composition and phenotypes with periodontitis differs per sex. Only in women higher adiposity indices and HA-LM phenotype were associated with an increased risk of periodontitis.
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
Chemical preservation is an important process that prevents foods, personal care products, woods and household products, such as paints and coatings, from undesirable change or decomposition by microbial growth. To date, many different chemical preservatives are commercially available, but they are also associated with health threats and severe negative environmental impact. The demand for novel, safe, and green chemical preservatives is growing, and this process is further accelerated by the European Green Deal. It is expected that by the year of 2050 (or even as soon as 2035), all preservatives that do not meet the ‘safe-by-design’ and ‘biodegradability’ criteria are banned from production and use. To meet these European goals, there is a large need for the development of green, circular, and bio-degradable antimicrobial compounds that can serve as alternatives for the currently available biocidals/ preservatives. Anthocyanins, derived from fruits and flowers, meet these sustainability goals. Furthermore, preliminary research at the Hanze University of Applied Science has confirmed the antimicrobial efficacy of rose and tulip anthocyanin extracts against an array of microbial species. Therefore, these molecules have the potential to serve as novel, sustainable chemical preservatives. In the current project we develop a strategy consisting of fractionation and state-of-the-art characterization methods of individual anthocyanins and subsequent in vitro screening to identify anthocyanin-molecules with potent antimicrobial efficacy for application in paints, coatings and other products. To our knowledge this is the first attempt that combines in-depth chemical characterization of individual anthocyanins in relation to their antimicrobial efficacy. Once developed, this strategy will allow us to single out anthocyanin molecules with antimicrobial properties and give us insight in structure-activity relations of individual anthocyanins. Our approach is the first step towards the development of anthocyanin molecules as novel, circular and biodegradable non-toxic plant-based preservatives.
Worldwide, coral reefs are rapidly declining due to increased sea water temperatures and other environmental stresses (Figure 1). To counter the extinction of major coral reef building species on the island of Bonaire, the non-profit organization Reef Renewal Foundation Bonaire is restoring degraded reef sites using corals that are grown in local nurseries. In these nurseries, corals are propagated on artificial trees using fragmentation. After 6-8 months of growth in the nursery, the corals are transplanted to degraded reef sites around the island. Over the years more than 21.000 corals have been outplanted to reef restoration sites in this way. These corals show high survivorship under natural reef conditions but remain under threat by environmental disturbances, such as increased water temperatures, diseases, and competition with macroalgae. A promising intervention to increase reef persistence and resilience is to manipulate the coral-associated microbiome. At present, the composition of the microbiome in nursery-reared and outplanted corals on Bonaire is unknown. The aim of the current project is to identify and isolate naturally occurring beneficial bacteria that may stimulate the resilience of these corals. Our key objectives are: 1) to assess the presence of functionally beneficial bacteria in corals in nursery and restoration sites on Bonaire using metagenomic screening. 2) to design culture strategies to isolate these functionally beneficial bacteria. In the future, a selection of these beneficial bacteria can be applied to the corals to increase their resilience against environmental disturbances.