The main result of this effectiveness study is that a reading program with a focus on students’ poetry reading processes, based on observational learning via eye movement modeling examples, can improve students’ reading comprehension for different text types. In a pretest-posttest design with an experimental group (ten classes) and a control group (five classes), students’ self-efficacy regarding their own reading process and their reading comprehension were measured. Over a six-week period, teachers of Dutch and their students worked with the six experimental lessons, instead of the regular reading program: students observed and evaluated contrasting peer reading processes, reflected on differences with their own reading process, and then they practiced aspects of a deep reading process. The program resulted in significant progress in the reading comprehension of “expository texts” (ES = .66), “short stories” (ES = .66), and especially “poetry” (ES = .81). Furthermore, the self-efficacy test results show that students in the experimental condition experienced significantly more learning effect after the intervention period than those in the control group. Moreover, based on the learning reports, evaluation tasks and interviews, it appears that the participants in the innovative program have become aware of their reading and how they improved their performance.
LINK
The role of neuronal oscillations during language comprehension is not yet well understood. In this paper we review and reinterpret the functional roles of beta- and gamma-band oscillatory activity during language comprehension at the sentence and discourse level. We discuss the evidence in favor of a role for beta and gamma in unification (the unification hypothesis), and in light of mounting evidence that cannot be accounted for under this hypothesis, we explore an alternative proposal linking beta and gamma oscillations to maintenance and prediction (respectively) during language comprehension. Our maintenance/prediction hypothesis is able to account for most of the findings that are currently available relating beta and gamma oscillations to language comprehension, and is in good agreement with other proposals about the roles of beta and gamma in domain-general cognitive processing. In conclusion we discuss proposals for further testing and comparing the prediction and unification hypotheses.
LINK
Oscillatory neural dynamics have been steadily receiving more attention as a robust and temporally precise signature of network activity related to language processing. We have recently proposed that oscillatory dynamics in the beta and gamma frequency ranges measured during sentence-level comprehension might be best explained from a predictive coding perspective. Under our proposal we related beta oscillations to both the maintenance/change of the neural network configuration responsible for the construction and representation of sentence-level meaning, and to top-down predictions about upcoming linguistic input based on that sentence-level meaning. Here we zoom in on these particular aspects of our proposal, and discuss both old and new supporting evidence. Finally, we present some preliminary magnetoencephalography data from an experiment comparing Dutch subject- and object-relative clauses that was specifically designed to test our predictive coding framework. Initial results support the first of the two suggested roles for beta oscillations in sentence-level language comprehension.
DOCUMENT
The present study investigated whether text structure inference skill (i.e., the ability to infer overall text structure) has unique predictive value for expository text comprehension on top of the variance accounted for by sentence reading fluency, linguistic knowledge and metacognitive knowledge. Furthermore, it was examined whether the unique predictive value of text structure inference skill differs between monolingual and bilingual Dutch students or students who vary in reading proficiency, reading fluency or linguistic knowledge levels. One hundred fifty-one eighth graders took tests that tapped into their expository text comprehension, sentence reading fluency, linguistic knowledge, metacognitive knowledge, and text structure inference skill. Multilevel regression analyses revealed that text structure inference skill has no unique predictive value for eighth graders’ expository text comprehension controlling for reading fluency, linguistic knowledge and metacognitive knowledge. However, text structure inference skill has unique predictive value for expository text comprehension in models that do not include both knowledge of connectives and metacognitive knowledge as control variables, stressing the importance of these two cognitions for text structure inference skill. Moreover, the predictive value of text structure inference skill does not depend on readers’ language backgrounds or on their reading proficiency, reading fluency or vocabulary knowledge levels. We conclude our paper with the limitations of our study as well as the research and practical implications.
DOCUMENT
The relationship between the evoked responses (ERPs/ERFs) and the event-related changes in EEG/MEG power that can be observed during sentence-level language comprehension is as yet unclear. This study addresses a possible relationship between MEG power changes and the N400m component of the event-related field. Whole-head MEG was recorded while subjects listened to spoken sentences with incongruent (IC) or congruent (C) sentence endings. A clear N400m was observed over the left hemisphere, and was larger for the IC sentences than for the C sentences. A time-frequency analysis of power revealed a decrease in alpha and beta power over the left hemisphere in roughly the same time range as the N400m for the IC relative to the C condition. A linear regression analysis revealed a positive linear relationship between N400m and beta power for the IC condition, not for the C condition. No such linear relation was found between N400m and alpha power for either condition. The sources of the beta decrease were estimated in the LIFG, a region known to be involved in semantic unification operations. One source of the N400m was estimated in the left superior temporal region, which has been related to lexical retrieval. We interpret our data within a framework in which beta oscillations are inversely related to the engagement of task-relevant brain networks. The source reconstructions of the beta power suppression and the N400m effect support the notion of a dynamic communication between the LIFG and the left superior temporal region during language comprehension.
LINK
There is a growing literature investigating the relationship between oscillatory neural dynamics measured using electroencephalography (EEG) and/or magnetoencephalography (MEG), and sentence-level language comprehension. Recent proposals have suggested a strong link between predictive coding accounts of the hierarchical flow of information in the brain, and oscillatory neural dynamics in the beta and gamma frequency ranges. We propose that findings relating beta and gamma oscillations to sentence-level language comprehension might be unified under such a predictive coding account. Our suggestion is that oscillatory activity in the beta frequency range may reflect both the active maintenance of the current network configuration responsible for representing the sentence-level meaning under construction, and the top-down propagation of predictions to hierarchically lower processing levels based on that representation. In addition, we suggest that oscillatory activity in the low and middle gamma range reflect the matching of top-down predictions with bottom-up linguistic input, while evoked high gamma might reflect the propagation of bottom-up prediction errors to higher levels of the processing hierarchy. We also discuss some of the implications of this predictive coding framework, and we outline ideas for how these might be tested experimentally.
LINK
BackgroundThere has been an increasing interest in negative or ‘undermining’ motivations for reading. In this study, we aimed to strengthen knowledge on the validity of the distinction between affirming and undermining motivations. First, we examined whether the structure of a questionnaire based on this distinction could be confirmed. Second, we examined the predictive value of undermining motivations for reading comprehension. Third, we studied moderator effects of gender and age.MethodsWe administered a reading motivation questionnaire and a reading comprehension test to 324 low-achieving adolescents. The questionnaire included items on affirming and undermining motivations for school and leisure time reading: intrinsic motivation and avoidance, self-efficacy and perceived difficulty.ResultsConfirmatory factor analyses supported the assumed structure of the questionnaire. Undermining motivations, particularly perceived difficulty, explained unique variance in reading achievement. Gender and age did not moderate effects of motivational variables.ConclusionsEducators need to be aware of the role of undermining motivations. Future research should examine if interventions can lead to the reduction of such motivations.
DOCUMENT
Gamma-band neuronal synchronization during sentence-level language comprehension has previously been linked with semantic unification. Here, we attempt to further narrow down the functional significance of gamma during language comprehension, by distinguishing between two aspects of semantic unification: successful integration of word meaning into the sentence context, and prediction of upcoming words. We computed eventrelated potentials (ERPs) and frequency band-specific electroencephalographic (EEG) power changes while participants read sentences that contained a critical word (CW) that was (1) both semantically congruent and predictable (high cloze, HC), (2) semantically congruent but unpredictable (low cloze, LC), or (3) semantically incongruent (and therefore also unpredictable; semantic violation, SV). The ERP analysis showed the expected parametric N400 modulation (HC < LC < SV). The time-frequency analysis showed qualitatively different results. In the gamma-frequency range, we observed a power increase in response to the CW in the HC condition, but not in the LC and the SV conditions. Additionally, in the theta frequency range we observed a power increase in the SV condition only. Our data provide evidence that gamma power increases are related to the predictability of an upcoming word based on the preceding sentence context, rather than to the integration of the incoming word's semantics into the preceding context. Further, our theta band data are compatible with the notion that theta band synchronization in sentence comprehension might be related to the detection of an error in the language input.
MULTIFILE
Language comprehension involves activating word meanings and integrating them with the sentence context. This study examined whether these routines are carried out even when they are theoretically unnecessary, namely, in the case of opaque idiomatic expressions, for which the literal word meanings are unrelated to the overall meaning of the expression. Predictable words in sentences were replaced by a semantically related or unrelated word. In literal sentences, this yielded previously established behavioral and electrophysiological signatures of semantic processing: semantic facilitation in lexical decision, a reduced N400 for semantically related relative to unrelated words, and a power increase in the gamma frequency band that was disrupted by semantic violations. However, the same manipulations in idioms yielded none of these effects. Instead, semantic violations elicited a late positivity in idioms. Moreover, gamma band power was lower in correct idioms than in correct literal sentences. It is argued that the brain's semantic expectancy and literal word meaning integration operations can, to some extent, be "switched off" when the context renders them unnecessary. Furthermore, the results lend support to models of idiom comprehension that involve unitary idiom representations.
DOCUMENT
During sentence level language comprehension, semantic and syntactic unification are functionally distinct operations. Nevertheless, both recruit roughly the same brain areas (spatially overlapping networks in the left frontotemporal cortex) and happen at the same time (in the first few hundred milliseconds after word onset). We tested the hypothesis that semantic and syntactic unification are segregated by means of neuronal synchronization of the functionally relevant networks in different frequency ranges: gamma (40 Hz and up) for semantic unification and lower beta (10–20 Hz) for syntactic unification. EEG power changes were quantified as participants read either correct sentences, syntactically correct though meaningless sentences (syntactic prose), or sentences that did not contain any syntactic structure (random word lists). Other sentences contained either a semantic anomaly or a syntactic violation at a critical word in the sentence. Larger EEG gamma-band power was observed for semantically coherent than for semantically anomalous sentences. Similarly, betaband power was larger for syntactically correct sentences than for incorrect ones. These results confirm the existence of a functional dissociation in EEG oscillatory dynamics during sentence level language comprehension that is compatible with the notion of a frequency-based segregation of syntactic and semantic unification.
DOCUMENT