Op 9 juni 2010 werd bij de Hanzehogeschool Groningen een seminar georganiseerd met het thema IT offshoring en het MKB onder de titel “The Hanze-India Connection”. In dit rapport wordt verslag gedaan van de presentaties en daaropvolgende discussies. REP-10-01.
DOCUMENT
Post-earthquake structural damage shows that out-of-plane wall collapse is one of the most prevalent failure mechanisms in unreinforced masonry (URM) buildings. This issue is particularly critical in Groningen, a province located in the northern part of the Netherlands, where low-intensity ground shaking has occurred since 1991 due to gas extraction. The majority of buildings in this area are constructed using URM and were not designed to withstand earthquakes, as the area had never been affected by tectonic seismic activity before. Hence, the assessment of URM buildings in the Groningen province has become of high relevance.Out-of-plane failure mechanisms in brick masonry structures often stem from poor wall-to-wall, wall-to-floor or wall-to-roof connections that provide insufficient restraint and boundary conditions. Therefore, studying the mechanical behaviour of such connections is of prime importance for understanding and preventing damages and collapses in URM structures. Specifically, buildings with double-leaf cavity walls constitute a large portion of the building stock in the Groningen area. The connections of the leaves in cavity walls, which consist of metallic ties, are expected to play an important role. Regarding the wall-to-floor connections, the traditional way for URM structures in Dutch construction practice is either a simple masonry pocket connection or a hook anchor as-built connection, which are expected to be vulnerable to out-of-plane excitation. However, until now, little research has been carried out to characterise the seismic behaviour of connections between structural elements in traditional Dutch construction practice.This thesis investigates the seismic behaviour of two types of connections: wall-to-wall connections between cavity wall leaves and wall-to-floor connections between the masonry cavity wall and timber diaphragm, commonly found in traditional houses in the Groningen area. The research is divided into three phases: (1) inventory of existing buildings and connections in the Groningen area, (2) performance of experimental tests, and (3) proposal and validation of numerical and mechanical models. The thesis explores the three phases as follows:(i) An inventory of connections within URM buildings in the Groningen area is established. The inventory includes URM buildings of Groningen based on construction material, lateral load-resisting system, floor system, number of storeys, and connection details. Specific focus is given to the wall-to-wall and wall-to-floor connections in each URM building. The thickness of cavity wall leaves, the air gap between the leaves and the size and spacing of timber joists are key aspects of the inventory.(ii) Experimental tests are performed on the most common connection typologies identified in the inventory. This phase consists of two distinct experimental campaigns:o The first experimental campaign took place at the laboratory of the Delft University of Technology to provide a comprehensive characterisation of the axial behaviour of traditional metal tie connections in cavity walls. The campaign included a wide range of variations, such as two embedment lengths, four pre-compression levels, two different tie geometries, and five different testing protocols, including both monotonic and cyclic loading. The experimental results showed that the capacity of the wall tie connection is strongly influenced by the embedment length and the tie geometry, whereas the applied pre-compression and the loading rate do not have a significant influence.o The second experimental campaign has been carried out at the laboratory of the Hanze University of Applied Sciences to characterise the seismic behaviour of timber joist-masonry cavity wall connections, reproducing both as-built and strengthened conditions. Twenty-two unreinforced masonry wallets were tested, with different configurations, including two tie distributions, two pre-compression levels, two different as-built connections, and two different strengthening solutions. The experimental results highlighted the importance of cohesion and friction between joist and masonry since the type of failure mechanism (sliding of the joist or rocking failure of the masonry wallet) depends on the value of these two parameters. Additionally, the interaction between the joist and the wallet and the uplift of the latter activated due to rocking led to an arching effect that increased friction at the interface between the joist and the masonry. Consequently, the arching effect enhanced the force capacity of the connection.(iii) Mechanical and numerical models are proposed and validated against the performed experiments or other benchmarks. Mechanical and numerical models for the cavity wall tie and mechanical models for the timber joist-masonry connections were developed and verified by the experimental results to predict the failure mode and the strength capacity of the examined connections in URM buildings.o The mechanical model for the cavity wall tie connections considers six possible failures, namely tie failure, cone break-out failure, pull-out failure, buckling failure, piercing failure and punching failure. The mechanical model is able to capture the mean peak force and the failure mode obtained from the tests. After being calibrated against the available experiments, the proposed mechanical model is used to predict the performance of untested configurations by means of parametric analyses, including higher strength of mortar for calcium silicate brick masonry, different cavity depth, different tie embedment depth, and the use of solid bricks in place of perforated clay bricks.o The results of the experimental campaign on cavity wall ties were also utilised to calibrate a hysteretic numerical model representing the cyclic axial response of cavity wall tie connections. The proposed model uses zero-length elements implemented in OpenSees with the Pinching4 constitutive model to account for the compression-tension cyclic behaviour of the ties. The numerical model is able to capture important aspects of the tie response, such as strength degradation, unloading stiffness degradation, and pinching behaviour. The mechanical and numerical modelling approach can be easily adopted by practitioner engineers seeking to model the wall ties more accurately when assessing URM structures against earthquakes.o The mechanical model of timber-masonry connections examines two different failure modes: joist-sliding failure mode, including joist-to-wall interaction and rocking failure mode due to joist movement. Both mechanical models have been validated against the outcomes of the experimental campaigns conducted on the corresponding connections. The mechanical model is able to estimate each contribution of the studied mechanism. Structural engineers can use the mechanical model to predict the capacity of the connection for the studied failure modes.This research study can contribute to a better understanding of typical Groningen houses in terms of identifying the most common connections used at wall-to-wall and wall-to-floor connections in cavity walls, characterising the identified connections and proposing mechanical models for the studied connections.
DOCUMENT
Green Sustainable Airport (GSA), an Interreg IVB project that is part of the North Sea Region Program, is an initiative of Groningen Airport Eelde (GAE). One of the goals of the GSA project is: The development and testing of sustainable and innovative applications that contribute to a more sustainable exploitation and increased accessibility of all partner airports. Currently a lot of research in the field of autonomous vehicles is carried out globally. In this research, named the “Flying Carpet”, the feasibility of using autonomous vehicles for passenger transfer between a future P+R facility at Glimmen and Groningen Airport Eelde is examined.Feasibility is researched on a technical, juridical and economic level. Implementing the proposed connection seems juridically feasible. -The juridical feasibility cannot be guaranteed, because it is a new situation whereby involved parties need to present a definitive answer, which at this stage is not possible. -Realizing the proposed concept has been indicated by the involved companies to be technically feasible, given that additional (existing) technologies will still need to be implemented. From a financial point of view, implementing an AGV connection is not recommendable. -The investment costs per transported passenger will be high, mainly because the transfer demand throughout a given day only has a few, if not just one, peak during arrival or departure of a flight. Therefore, choosing the AGV connection option should not be based on a financial point of view, but instead on gaining non-tangible assets in favour of GSA and GAE.
DOCUMENT
The transition towards an economy of wellbeing is complex, systemic, dynamic and uncertain. Individuals and organizations struggle to connect with and embrace their changing context. They need to create a mindset for the emergence of a culture of economic well-being. This requires a paradigm shift in the way reality is constructed. This emergence begins with the mindset of each individual, starting bottom-up. A mindset of economic well-being is built using agency, freedom, and responsibility to understand personal values, the multi-identity self, the mental models, and the individual context. A culture is created by waving individual mindsets together and allowing shared values, and new stories for their joint context to emerge. It is from this place of connection with the self and the other, that individuals' intrinsic motivation to act is found to engage in the transitions towards an economy of well-being. This project explores this theoretical framework further. Businesses play a key role in the transition toward an economy of well-being; they are instrumental in generating multiple types of value and redefining growth. They are key in the creation of the resilient world needed to respond to the complex and uncertain of our era. Varta-Valorisatielab, De-Kleine-Aarde, and Het Groene Brein are frontrunner organizations that understand their impact and influence. They are making bold strategic choices to lead their organizations towards an economy of well-being. Unfortunately, they often experience resistance from stakeholders. To address this resistance, the consortium in the proposal seeks to answer the research question: How can individuals who connect with their multi-identity-self, (via personal values, mental models, and personal context) develop a mindset of well-being that enables them to better connect with their stakeholders (the other) and together address the transitional needs of their collective context for the emergence of a culture of the economy of wellbeing?
In recent years, ArtEZ has worked on a broadly supported strategic research agenda on the themes New Ecologies of Matter (ecological challenges), Social Equity (social-societal issues), (Un)Learning Practices (educational innovations) and (Non)CybernEtic Fabric (technological developments). Building on these strategic themes, the ArtEZ Research Collective as developed an international research strategy to become a valuable partner in the relevant Horizon Europe (HEU) areas of Environment, Industry and Social science and humanities. With its specific knowledge position and approach from arts and creativity, ArtEZ is convinced that it can play a distinctive role in European consortia to tackle various challenges in these areas, in particular from the perspective and research topics of the professorships Fashion and Tactical Design. To achieve its ambitions and goals in its targeted research topics, ArtEZ is convinced that a combination of international connections and local applications is key for successful impact. Building upon existing relations and extending the international research position requires extra efforts, e.g., by developing a strong international framework of state-of-the-art research results, impacts and ambitions. Therefore ArtEZ needs to (further) build on both its international network and its supportive infrastructure. With this proposal ArtEZ is presenting its goals and efforts to work on its international recognition as a valuable research partner, and to broaden its international network in cutting-edge research and other stakeholders. With regards to its supporting infrastructure, ArtEZ has the ambition to expand the impact of the Subsidy Desk to become a professional partner to the professorships. This approach requires a further professionalization and extension of both the Subsidy Desk organization and its services, and developing and complementing skills, expertise and competences to comply to the European requirements.
The anterior cruciate ligament (ACL) is a strong rope-like tissue which connects the femur to the tibia in the knee joint. Its function is to provide structural stability to the knee while preventing unnatural forward movement of the tibia relative to the femur. Acute complete ACL ruptures during movements like knee hyperextension or sudden changes of direction (pivoting) damage two entities: the ligament itself and its nerve connections to the posterior tibial nerve (PTN). PTN innervation in the ACL is essential for: a) proprioception (e.g. perception of position and movement/acceleration experienced by the ligament), and b) stability of the knee joint. Upon ACL rupture, the orthopedic surgeon reconstructs the ACL with a graft from the hamstring, patellar or quadriceps tendon. After the surgery, the goal is to regain neuromuscular control and dynamic stabilization during rehabilitation as soon as possible for a quick return to sports and daily activities. However, surgeons are not able to reconstruct the nerve gap between the PTN and the grafted ligament due to the microscopic size of the innervation in the ACL. Not linking the PTN to the graft creates a disconnection between the knee joint and the spinal cord. To mitigate these disadvantages in ACL surgery, this study focuses on activating the growth of proprioception nerve endings using a ligament loaded with growth factors (neurotrophins). We hypothesize that neurotrophins will activate proprioceptive fibers of neurons close to the ACL. We describe graft fabrication steps and in vitro experiments to expand on the regeneration capacity of a commercially available ACL-like synthetic ligament called LARS. The results will bring the ACL regeneration field closer to having a graft that can aid patients in regaining mobility and stability during locomotion and running, confidence in the strength of the knee joint, and quick return to sports.