Both connectivity and accessibility are important for regional development. Places and communities need to be connected in order to be part of the wider economy, and people need to have access to places, other communities and labour markets to fully participate in society. In contemporary society, not only physical connectivity and accessibility but also digital connectivity plays an important role in the economic and social potential of regions. The relationship between them is also an important issue. This report discusses and assesses the role of physical and digital connectivity in the socioeconomic development of rural regions. In particular, we discuss issues concerning digital connectivity and rural development in remote rural areas within the North Sea Region.
DOCUMENT
As Vehicle-to-Everything (V2X) communication technologies gain prominence, ensuring human safety from radiofrequency (RF) electromagnetic fields (EMF) becomes paramount. This study critically examines human RF exposure in the context of ITS-5.9 GHz V2X connectivity, employing a combination of numerical dosimetry simulations and targeted experimental measurements. The focus extends across Road-Side Units (RSUs), On-Board Units (OBUs), and, notably, the advanced vehicular technologies within a Tesla Model S, which includes Bluetooth, Long Term Evolution (LTE) modules, and millimeter-wave (mmWave) radar systems. Key findings indicate that RF exposure levels for RSUs and OBUs, as well as from Tesla’s integrated technologies, consistently remain below the International Commission on Non-Ionizing Radiation Protection (ICNIRP) exposure guidelines by a significant margin. Specifically, the maximum exposure level around RSUs was observed to be 10 times lower than ICNIRP reference level, and Tesla’s mmWave radar exposure did not exceed 0.29 W/m2, well below the threshold of 10 W/m2 set for the general public. This comprehensive analysis not only corroborates the effectiveness of numerical dosimetry in accurately predicting RF exposure but also underscores the compliance of current V2X communication technologies with exposure guidelines, thereby facilitating the protective advancement of intelligent transportation systems against potential health risks.
MULTIFILE
In the past decade, the fast and transient coupling and uncoupling of functionally related brain regions into networks has received much attention in cognitive neuroscience. Empirical tools to study network coupling include functional magnetic resonance imaging (fMRI)-based functional and/or effective connectivity, and electroencephalography (EEG)/magnetoencephalography-based measures of neuronal synchronization. Here we use simultaneously recorded EEG and fMRI to assess whether fMRI-based connectivity and frequency-specific EEG power are related. Using data collected during resting state, we studied whether posterior EEG alpha power fluctuations are correlated with connectivity within the visual network and between the visual cortex and the rest of the brain. The results show that when alpha power increases, BOLD connectivity between the primary visual cortex and occipital brain regions decreases and that the negative relation of the visual cortex with the anterior/medial thalamus decreases and the ventral–medial prefrontal cortex is reduced in strength. These effects were specific for the alpha band, and not observed in other frequency bands. The decreased connectivity within the visual system may indicate an enhanced functional inhibition during a higher alpha activity. This higher inhibition level also attenuates long-range intrinsic functional antagonism between the visual cortex and the other thalamic and cortical regions. Together, these results illustrate that power fluctuations in posterior alpha oscillations result in local and long-range neural connectivity changes.
LINK
The main aim of the project is to provide new research in the arts by focusing on the concept of the inter-sensorial as an essential text for the creation of art and culture. It is designed to foreground the role of the sensorium as an underpinning source for many aspects of thought and cultural heritage. This project will blend visual arts with applied arts and traditional local traditions, revealing new light on the artistic facets and customs which are usually overlooked.The extended residencies will promote transnational mobility for emerging artists, facilitating international relationships between different artistic and cultural contexts within the EU. This will promote transnational interconnectivity between artists and cultures, creating a resourceful intercultural fertilisation, endorsing cultural diversity, social inclusion and most of all, further research on the intercultural facets.Through the various side-activities to take place during the mobilities of the artists, the project aims to strengthen and develop diverse audiences by producing the necessary elements for a dialogue, illustrating interpretations of rich layers of tangible and intangible heritage and legacies of European countries related to the tradition of sensorial experiences and how they evolved around traditional customs. Furthermore, it also aims to rethink and project new and innovative ways for documenting, preserving and communicating data to different audiences.
The traffic safety of cyclists is under pressure. The number of fatalities and injuries is increasing, and the number of single-bicycle accidents is on the rise. However, from a traffic safety perspective, the most concerning trend is the growing number of incidents between motorized vehicles and cyclists. In addition to infrastructural solutions, such as more segregated and wider bike lanes, both industry and government are exploring technological developments to better safeguard cyclist safety. One of the technological solutions being considered is the use of C-V2X communication. C-V2X, Cellular Vehicle-to-X, is a technology that enables short-range signal exchanges between road users, informing them of each other's presence. C-V2X can be used, for example, to alert drivers via dedicated in-car information systems about the presence of cyclists on the road (e.g. at crossings). Although the technology and chipsets have been developed, the application of C-V2X to improve cyclist safety has not yet been thoroughly investigated. Therefore, HAN, Gazelle, and ARK Infomotives are researching the impact of C-V2X (on cyclist safety). Using advanced simulations with a digital twin in an urban environment and rural environment, the study will analyze how drivers respond to cyclist presence signals and determine the maximum penetration rate of ‘connected’ cyclists. Based on this, a pilot study will be conducted in a controlled environment on HAN terrain to validate the direction of the simulation results. The project aligns with the Missiegedreven Innovatiebeleid and the KIA Sleuteltechnologieën, specifically within application of digital and information technologies. This proposal aligns with the innovation domain of Semiconductor Technologies by applying advanced sensor and digital connectivity solutions to enhance cyclist safety. The project fits within the theme of Sleuteltechnologieën en Duurzame Materialen of the strategic research agenda of the VH by utilizing digital connectivity, sensor fusion, and data-driven decision-making for safer mobility solutions.
The integration of renewable energy resources, controllable devices and energy storage into electricity distribution grids requires Decentralized Energy Management to ensure a stable distribution process. This demands the full integration of information and communication technology into the control of distribution grids. Supervisory Control and Data Acquisition (SCADA) is used to communicate measurements and commands between individual components and the control server. In the future this control is especially needed at medium voltage and probably also at the low voltage. This leads to an increased connectivity and thereby makes the system more vulnerable to cyber-attacks. According to the research agenda NCSRA III, the energy domain is becoming a prime target for cyber-attacks, e.g., abusing control protocol vulnerabilities. Detection of such attacks in SCADA networks is challenging when only relying on existing network Intrusion Detection Systems (IDSs). Although these systems were designed specifically for SCADA, they do not necessarily detect malicious control commands sent in legitimate format. However, analyzing each command in the context of the physical system has the potential to reveal certain inconsistencies. We propose to use dedicated intrusion detection mechanisms, which are fundamentally different from existing techniques used in the Internet. Up to now distribution grids are monitored and controlled centrally, whereby measurements are taken at field stations and send to the control room, which then issues commands back to actuators. In future smart grids, communication with and remote control of field stations is required. Attackers, who gain access to the corresponding communication links to substations can intercept and even exchange commands, which would not be detected by central security mechanisms. We argue that centralized SCADA systems should be enhanced by a distributed intrusion-detection approach to meet the new security challenges. Recently, as a first step a process-aware monitoring approach has been proposed as an additional layer that can be applied directly at Remote Terminal Units (RTUs). However, this allows purely local consistency checks. Instead, we propose a distributed and integrated approach for process-aware monitoring, which includes knowledge about the grid topology and measurements from neighboring RTUs to detect malicious incoming commands. The proposed approach requires a near real-time model of the relevant physical process, direct and secure communication between adjacent RTUs, and synchronized sensor measurements in trustable real-time, labeled with accurate global time-stamps. We investigate, to which extend the grid topology can be integrated into the IDS, while maintaining near real-time performance. Based on topology information and efficient solving of power flow equation we aim to detect e.g. non-consistent voltage drops or the occurrence of over/under-voltage and -current. By this, centrally requested switching commands and transformer tap change commands can be checked on consistency and safety based on the current state of the physical system. The developed concepts are not only relevant to increase the security of the distribution grids but are also crucial to deal with future developments like e.g. the safe integration of microgrids in the distribution networks or the operation of decentralized heat or biogas networks.