Background Clients facing decision-making for long-term care are in need of support and accessible information. Construction of preferences, including context and calculations, for clients in long-term care is challenging because of the variability in supply and demand. This study considers clients in four different sectors of long-term care: the nursing and care of the elderly, mental health care, care of people with disabilities, and social care. The aim is to understand the construction of preferences in real-life situations. Method Client choices were investigated by qualitative descriptive research. Data were collected from 16 in-depth interviews and 79 client records. Interviews were conducted with clients and relatives or informal caregivers from different care sectors. The original client records were explored, containing texts, letters, and comments of clients and caregivers. All data were analyzed using thematic analysis. Results Four cases showed how preferences were constructed during the decision-making process. Clients discussed a wide range of challenging aspects that have an impact on the construction of preferences, e.g. previous experiences, current treatment or family situation. This study describes two main characteristics of the construction of preferences: context and calculation. Conclusion Clients face diverse challenges during the decision-making process on long-term care and their construction of preferences is variable. A well-designed tool to support the elicitation of preferences seems beneficial.
DOCUMENT
Workers are an important factor in the implementation of a construction project. Applying ergonomic postures for workers in the projects is necessary to minimize the risk of work accidents and the risk of experiencing musculoskeletal disorders (MsDs). The use of lightweight brick for wall construction is relatively new and is in great demand by construction industries in Indonesia. During wall construction, workers do repetitive activities such as bending, kneeling, holding tools, or tilting the body. These activities potentially increase the risk of injury and musculoskeletal disorders. This study aims to assess the work posture of workers on the wall construction using lightweight brick and to analyze the high-risk activities. The wall construction work assessment included five stages of activities, (1) material transfer, (2) practical columns making and installation, (3) lightweight brick adhesive dough-making process, (4) lightweight bricks laying, and (5) lightweight brick plaster. The Rapid Upper Limb Assessment (RULA) method was used to evaluate the working posture. This method was developed to investigate the risk of abnormalities that workers will potentially experience. Based on the RULA employee assessment worksheet, the research results showed that 69% of workers have a high-risk level of work posture and 31% have low-risk levels of work posture. There are three activities with a high-risk level, namely, material transfer, lightweight brick laying, and lightweight brick plaster. At the same time, practical column making and installation work and lightweight brick adhesive dough-making processes are at a low-risk level. According to the RULA risk level, action is required to investigate and immediately improve activities with a high-risk level. If workers continue to work with the same posture, they will be at risk of developing musculoskeletal disorders related to the neck, trunk, and wrists in the near future. Correcting the worker’s posture can be done by improving work position, process, and workplace layout.
DOCUMENT
The impact of the construction industry on the natural environment is severe, natural areas are changedinto predominantly hard solid surfaces, the energy use in the built environment is high and the industryputs huge claims on materials.
MULTIFILE
The research proposal aims to improve the design and verification process for coastal protection works. With global sea levels rising, the Netherlands, in particular, faces the challenge of protecting its coastline from potential flooding. Four strategies for coastal protection are recognized: protection-closed (dikes, dams, dunes), protection-open (storm surge barriers), advancing the coastline (beach suppletion, reclamation), and accommodation through "living with water" concepts. The construction process of coastal protection works involves collaboration between the client and contractors. Different roles, such as project management, project control, stakeholder management, technical management, and contract management, work together to ensure the project's success. The design and verification process is crucial in coastal protection projects. The contract may include functional requirements or detailed design specifications. Design drawings with tolerances are created before construction begins. During construction and final verification, the design is measured using survey data. The accuracy of the measurement techniques used can impact the construction process and may lead to contractual issues if not properly planned. The problem addressed in the research proposal is the lack of a comprehensive and consistent process for defining and verifying design specifications in coastal protection projects. Existing documents focus on specific aspects of the process but do not provide a holistic approach. The research aims to improve the definition and verification of design specifications through a systematic review of contractual parameters and survey methods. It seeks to reduce potential claims, improve safety, enhance the competitiveness of maritime construction companies, and decrease time spent on contractual discussions. The research will have several outcomes, including a body of knowledge describing existing and best practices, a set of best practices and recommendations for verifying specific design parameters, and supporting documents such as algorithms for verification.
The research for alternatives to substitute cement in concrete increased in the last years to reduce the environmental impact. Geopolymers or alkali-activated materials are one of the options. The proposed project aims to obtain a wet cell based on a geopolymer with alginate and natural fibres. The wet cell will be a final prototype composed of panels for wet construction areas such as bathrooms and kitchens. There is a lack of biobased solutions for wet areas currently in the market. And the present project, together with companies of suppliers and users from the market, aims to provide a solution for a wet cell using biobased materials. The natural fibres added to the geopolymer will substitute a portion of sand and gravel, producing a lighter product than concrete. Also, the fibres increase the thermal and acoustic insulation. Natural fibres should be pretreated to increase the bond with other materials in the mixture. The chemical used in the alkali-activated materials is the same to pretreat the fibres. Also, alginates extracted from seaweeds can be used as binders, and alkali is used in the extraction process. One of the objectives is to develop the method and technique to produce geopolymer with alginates and pretreat the fibre simultaneously during the mixture. After defining the optimum mixture for the geopolymer, panels will be produced, and in the end, a wet cell will be constructed with the geopolymer panels.
Recent research by the renowned Royal Institution of Chartered Surveyors (RICS) shows that more than 2/3 of all CO2 is emitted during the building process and less than 1/3 during use to heat the building and the tap water. Lightweight, local and biobased materials such as biocomposites to replace concrete and fossil based cladding are in the framework of climate change, a necessity for future building. Using plant fiber in polymer composites is especially interesting for construction since natural fibers exhibit comparative good mechanical properties with small specific weight, which defines the potential for lightweight constructions. The use of renewable resources, will affect the ecosystem favorably and the production costs of construction materials could also decrease. However, one disadvantage of natural fibers in plastics is their hydrophilic properties. In construction the materials need to meet special requirements like the resistance against fluctuating weather conditions (Ticoalu et al., 2010). In contrast to synthetic fibers, the natural ones are more moisture- and UV-radiation-sensitive. That may lead to degradation of these materials and a decreasing in quality of products. (Lopez et al., 2006; Mokhothu und John, 2017) Tanatex and NPSP have approached CoE BBE/Avans to assist in a study where fibres impregnated with the (modified) Tanatex products will be used for reinforcement of thermoset biopolymers. The influence of the different Tanatex products on the moisture absorption of natural/cellulosic fibers and the adhesion on the fibers on main composite matrix will be measured. The effect of Tantex products can optimize the bonding reaction between the resin and the fibers in the (bio) composite and result to improved strength and physico-chemical properties of the biocomposite materials. (word count: 270)