Floating wetland treatment systems (FWTS) are an innovative stormwater treatment technology currently being trialled on a larger scale in Australia. FWTS provide support for selected plant species to remove pollutants from stormwater discharged into a water body. The plant roots provide large surface areas for biofilm growth, which serves to trap suspended particles and enable the biological uptake of nutrients by the plants. As FWTS can be installed at the start of the construction phase, they can start treating construction runoff almost immediately. FWTS therefore have the potential to provide the full range of stormwater treatment (e.g. sediment and nutrient removal) from the construction phase onwards. A 2,100m 2 FWTS has been installed within a greenfield development site on the Sunshine Coast, Queensland. A four-year research study is currently underway which will target the following three objectives; (1) characterise the water quality of runoff from a greenfield development in the construction and operational phases; (2) verify the stormwater pollution removal performance of a FWTS during the construction and operational phases of a greenfield development; and (3) characterise the ability of FWTS to manage urban lake health. This extended abstract presents the proposed research methodology and anticipated outcomes of the study
MULTIFILE
Dealing with and maintaining high-quality standards in the design and construction phases is challenging, especially for on-site construction. Issues like improper implementation of building components and poor communication can widen the gap between design specifications and actual conditions. To prevent this, particularly for energy-efficient buildings, it is vital to develop resilient, sustainable strategies. These should optimize resource use, minimize environmental impact, and enhance livability, contributing to carbon neutrality by 2050 and climate change mitigation. Traditional post-occupancy evaluations, which identify defects after construction, are impractical for addressing energy performance gaps. A new, real-time inspection approach is necessary throughout the construction process. This paper suggests an innovative guideline for prefabricated buildings, emphasizing digital ‘self-instruction’ and ‘self-inspection’. These procedures ensure activities impacting quality adhere to specific instructions, drawings, and 3D models, incorporating the relevant acceptance criteria to verify completion. This methodology, promoting alignment with planned energy-efficient features, is supported by BIM-based software and Augmented Reality (AR) tools, embodying Industry 4.0 principles. BIM (Building Information Modeling) and AR bridge the gap between virtual design and actual construction, improving stakeholder communication and enabling real-time monitoring and adjustments. This integration fosters accuracy and efficiency, which are key for energy-efficient and nearly zero-energy buildings, marking a shift towards a more precise, collaborative, and environmentally sensible construction industry.
DOCUMENT
Permeable pavements are a type of sustainable urban drainage system (SUDS)technique that are used around the world to infiltrate and treat urban Stormwater runoff and to minimize runoff volumes. Urban stormwater runoff contains significant concentrations of suspended sediments that can cause clogging and reduce the infiltration capacity and effectiveness of permeable pavements. It is important for stormwater managers to be able to determine when the level of clogging has reached an unacceptable level, so that they can schedule maintenance or replacement activities as required. Newly-installed permeable pavements in the Netherlands must demonstrate a minimum infiltration capacity of 194 mm/h (540 l/s/ha). Other commonly used permeable pavement guidelines in the Netherlands recommend that maintenance is undertaken on permeable pavements when the infiltration falls below 0.50 m/d (20.8 mm/h). This study used a newly-developed, full-scale infiltrationtest procedure to evaluate the infiltration performance of eight permeable pavements in five municipalities that had been in service for over seven years in the Netherlands. The determined infiltration capacities vary between 29 and 342 mm/h. Two of the eight pavements show an infiltration capacity higher than 194 mm/h, and all infiltration capacities are higher than 20.8 mm/h. According to the guidelines, this suggests that none of the pavements tested in this study would require immediate maintenance.
DOCUMENT