Urban construction logistics has a big impact on cities. The topic of this paper is governance strategies for realising more sustainable urban construction logistics. Although not much research has been done in the field of governance of construction logistics, several authors have stressed the fragmented nature of the construction industry and the importance of collaboration in urban construction logistics as issues. A literature review was done to identify the barriers in collaboration. Based on these barriers the research objective was to determine which drivers for collaborative governance are needed to improve urban construction logistics. The methods for data collection were semi-structured interviews and a focus group. The collaborative governance model is applied as a strategy to overcome the barriers in collaboration and governance identified. Key findings are both formal and informal barriers hinder the governance of construction logistics. Based on a collaborative governance model we identified four for improving collaborative governance.
From the article: Abstract. This exploratory and conceptual article sets out to research what arguments and possibilities for experimentation in construction exists and if experimentation can contribute towards more innovative construction as a whole. Traditional, -western- construction is very conservative and regional, often following a traditional and linear design process, which focuses on front-loaded cost savings and repetitive efficiency, rather than securing market position through innovation. Thus becoming a hindrance for the development of the sector as a whole. Exploring the effects of using the, in other design-sectors commonly and successfully practiced, “four-phased iterative method” in architectural construction could be the start of transforming the conservative construction industry towards a more innovative construction industry. The goal of this research is to find whether the proposed strategy would indeed result in a higher learning curve and more innovation during the - architectural- process. Preliminary research indicates that there is argumentation for a more experimental approach to construction.
The project X-TEAM D2D (Extended ATM for Door-to-Door Travel) has been funded by SESAR JU in 2020 and completed its activities in 2022, pursuing and accomplishing the definition, development and initial assessment of a Concept of Operations (ConOps) for the seamless integration of ATM and air transport into an overall intermodal network, including other available transportation means (surface, water), to support the door-to-door connectivity, in up to 4 hours, between any location in Europe. The project addressed the ATM and air transport, including Urban Air Mobility (UAM), integration in the overall transport network serving urban and extended urban (up to regional level) mobility, specifically identifying and considering the transportation and passengers service scenarios expected for the near, medium and long-term future, i.e. for the project baseline (2025), intermediate (2035) and final (2050) time horizons. In this paper, the main outcomes from the project activities are summarized, with particular emphasis on the studies about the definition of future scenarios and use cases for the integration of the vertical transport with the surface transport towards integrated intermodal transport system and about identification of the barriers towards this goal. In addition, an outline is provided on the specific ConOps for the integration of ATM in intermodal transport infrastructure (i.e. the part of the overall ConOps devoted to integration of different transportation means) and on the specific ConOps for the integration of ATM in intermodal service to passengers (i.e. the specific component of the ConOps devoted to design of a unique service to passengers). Finally, the main outcomes are summarized from the validation of the proposed ConOps through dedicated simulations.
Client: Taskforce for Applied Research (SIA), part of the Netherlands Organisation for Scientific Research (NWO), with funding from the ministry of Education, Culture and Science (OCW)Funder: RAAK (Regional Attention and Action for Knowledge circulation)This research is co-funded by the Taskforce for Applied Research (SIA), part of the Netherlands Organisation for Scientific Research (NWO), under the RAAK scheme.Project SASTDes aimed to resolve key issues in the sustainability assessment process of tourism destinations, with the objective to reduce the costs of assessments both in time and money, and to use the results of assessments for destination branding and marketing. The project’s core research question was: ‘How can sustainability assessments effectively and efficiently contribute to the sustainable development of tourism destinations and tourism products?’ All 7 work packages of this project were ultimately geared towards the construction of the SASTDes tool, an application enabling all elements of a destination sustainability assessment, with which DMOs can integrate sustainability into their strategic and operational management. All the project’s accomplishments are described in the Project Overview report that can be downloaded on this page. See under Research Output for individual reports.The consortium was led by BUas’ Centre for Sustainability, Tourism and Transport (CSTT). Knowledge partners were BUas’ associate professorships Sustainable Business Models (SBM) and Leisure and Tourism Experiences, Wageningen Environmental Research (WENR), part of Wageningen University & Research (WUR), and the associate professorship Data Science & ICT of Avans University of Applied Sciences. The municipalities of Breda, Goeree-Overflakkee and Schouwen-Duiveland, as well as Visit Zuid-Limburg, joined as destination partners. Tourism industry partners and NGO’s were Green Destinations, Follow, TUI Benelux, SeaGoingGreen, Fair Sayari, ECEAT, Treinreiswinkel, and bookdifferent.com.
In recent years there has been an increasing need for nature inclusive solutions in the construction sector. The practice asks for new solutions contributing to the development of sustainable, resilient and liveable cities. Under the guidance of the Dutch government, greening of the cities has become one of the aims of municipalities in the Netherlands and the focus of some emerging companies and design offices. In cities, quay masonry walls, thanks to their close contact with water, have the potential to be ecologically engineered to favour vegetation, thereby contributing to the renaturing of urban areas. By building a prototype of an innovative masonry building system, this project aims to investigate the potential for improving the integration between masonry quay walls and vegetation. The set-up consists of a dry-stacking system for brick masonry: strong polyamide elements interconnect the bricks, providing strength to the masonry without the need for mortar. The space in between bricks, traditionally filled with mortar, is to be filled with compost material, providing an ideal substrate for plant growth and a buffer for water storage (figure 1). In addition to improved integration between masonry walls and vegetation, the proposed dry-stacking system allows for easy reuse of bricks, thereby contributing to circularity and sustainability of the building industry. The project broadens and strengthens the national network in the field of urban ecology by bringing together expertise from the fields of architecture, ecology and the construction sector, from both academia and practice.
The building industry is a major target for resource-efficiency developments, which are crucial in European Union’s roadmaps. Using renewable materials impacts the sustainability of buildings and is set as urgent target in current architectural practice. The building industry needs renewable materials positively impacting the CO2 footprint without drawbacks. The use of wood and timber as renewable construction materials has potentials, but also drawbacks because trees need long time to grow; producing timber generates considerable waste; and the process from trees to applications in buildings requires transportation and CO2 emission. This research generates new scientific knowledge and a feasibility study for a new wood-like bio-material - made of cellulose and lignin from (local) residual biomass via i.e. 3D printing - suitable for applications in the building industry. It contributes to a sustainable built environment as it transforms waste from different sectors into a local resource to produce a low carbon-footprint bio-material for the construction sector. Through testing, the project will study the material properties of samples of raw and 3D printed material, correlating different material recipes that combine lignin and cellulose and different 3D printing production parameters. It will map the material properties with the requirements of the construction industry for different building products, indicating potentials and limits of the proposed bio-material. The project will produce new knowledge on the material properties, a preliminary production concept and an overview of potentials and limits for application in the built environment. The outcome will be used by industry to achieve a marketable new bio-material; as well as in further scientific academic research.