Measurement methodologies are increasingly being deployed to monitor energy poverty or energy access, and to provide insights for policy development, both in the South and more recently also in the North. However, care should be taken with interpretation and use of the data, particularly if a gender perspective is lacking. This paper argues that taking a gender perspective is vital to understanding energy access and outcomes related to interventions, through consideration of gendered user differences in energy needs, access to energy services and gendered outcome pathways. We show that the standard practice of focusing on numbers of energy connections, availability and quality of supply, is insufficient to provide insights relevant to realising gender equal access and benefits. It is a political decision about what is measured and who decides on what is measured. Based on the literature, we discuss key elements of the use of gender approaches in the assessment of energy access and energy poverty. We show that by including gender approaches in the design and execution of qualitative and quantitative data collection and analysis, there is the potential to contribute to more equitable outcomes from improved energy access.
Purpose: This paper aims to explore the phenomenon of molecular gastronomy by conducting empirical research focusing on renowned chefs. Design/methodology/approach: The approach taken is a literature review summarising past culinary innovations then the paper focuses on the origins and evolution of molecular gastronomy, followed by 18 phenomenological interviews with a snowball sample of world class chefs from across Europe. Findings: There is far greater confusion about what molecular gastronomy might be than is implied in previous studies. The term has become wrongly used to describe a possible culinary movement mainly as a result of media influence. Leading chefs, whose new restaurant concepts have become associated with it, reject the term. Research limitations/implications: With only 20 years of history molecular gastronomy is still a comparatively new phenomenon. This initial research presents a clear picture of its evolution so far and the increasing confusion the use of the term has created. It is still far too early to decide if these are heralding a new gastronomic movement. Practical implications: Although molecular gastronomy itself may not provide a foundation for a genuine and lasting development of cuisine it is generating fascination with the fundamental science and techniques of cuisine and showy culinary alchemy. As with nouvelle cuisine poor quality copycat chefs could bring into disrepute the reputation and practices of those who are at the vanguard of culinary and restaurant innovation. Originality/value: This paper is the first widespread primary study, across five countries, into recognised exceptional chefs' understanding of molecular gastronomy. It clarifies that molecular gastronomy was never intended to be the foundation of a culinary movement and identifies four key elements for the development of lasting cuisine movements and trends.
Surface Active Agents, or surfactants, are chemicals which provide a surface (interface) activity when dispersed in liquids. They have different purposes, can be used as herbicides, anti-foaming agents, adhesives, cleaning agents and softeners. For cleaning purposes, their function is to alter (decrease) liquid surface tension. In this function they are ubiquitous in both industrial processes (cleaning of production equipment, storage vats, packaging lines, and cooking units either during the manufacturing process) and domestic applications. ProtoNeat proposes an alternative way to decrease water surface tension without adding chemicals (surfactants). This can be done by charging the water (producing protonically charged water) [2], i.e. positive and negative Bjerrum-defect like charges [3, 4]. This phenomenon was experimentally observed by Fuchs et al [5] in anolyte and catholyte when doing high voltage electrolysis of highly pure water during the so-called ‘floating water bridge’ experiment. The work done by the authors, when working with this “bridge”, showed that, in case of positive excess charge, the hydronium ions migrate to the surface [8] thereby significantly lowering the surface tension [9,10]. However, for how long this effect can be maintained and how effective it is to produce such water is still unknown. ProtoNeat wants to tackle these two questions and investigate whether a continuous production of protonically charged water as an environmentally friendly and sustainable cleaning agent is possible.
The objective of Sustainable Solid Biofuel project is to contribute to a zero-waste and low-carbon emission production of charcoal by evaluating the feasibility and energy efficiency of three different conversion technologies. According to the IEA’s World Energy Outlook 2015 3 billion (more than a third of the global population) use solid biomass as wood, charcoal, or animal waste for cooking and heating1. Charcoal is one of the most widely used of the solid biofuels. In current charcoal production processes the gas stream from pyrolysis are mostly directly released to the environment which wastes energy and causes serious environmental pollution. However, the production of charcoal can be improved to be practiced on a sustainable basis by careful selection of wood or alternative biomass source as wood waste or agricultural residues and further focusing on harvesting strategy and production techniques. In the conversion process it is necessary to increase the energy efficiency while reducing emissions. Further sustainability can be increased by processing the smoke that is exhausted from the kiln, that correspond to roughly one third of the whole biomass. Within the volatile components in the smoke there are chemicals which can be used, for example, as industrial cleaners or wood preservatives and thus one of the environmental drawbacks of charcoal production can be eliminated and turned into another product input. Brazil is the world's largest charcoal producer2 consequently the state of the art of the recearch in this field can be found in Brazil. In this Sustainable Solid Biofuels project one of the leading universities of Brazil, the Universidade Federal de Viçosa (UFV) is joining forces with Avans University of Applied Sciences and two Dutch SMEs Privium B.V. and Charcotec B.V. to carry out the evaluation of the improvements that can be achieved in the energy efficiency.
"Taste Europe on the Go!" is a cross-sectoral international project in which we include two universities of applied sciences from the Netherlands and Finland into the successful project of vocational business college and restaurant service college partners from Finland, Italy and Spain.The project aims at learning about entrepreneurship in an international context through setting up pop-up restaurants in the participating countries. Every six months, one of the participating countries welcomes other participants to host a pop-up restaurant together. In December 2019 it was BUas' turn. A total of 50 international students and staff members from different countries united their entrepreneurial and cooking skills to serve international dishes at the Belcrum Wintermarket (Breda) of 2019.Vocational education needs pedagogical innovations to increase student motivation to complete studies, graduate on time and gain lifelong learning skills so that their capability to get employed with up-to-date knowledge and skills be better. In this project we focus on learning entrepreneurial skills using an eLearning platform and strengthening key competences in Vocational Education Training (VET) curricula by learning entrepreneurship in new way.PartnersPerho Liiketalousopisto (Finland), Mercuria Kauppiaitten Kauppaoppilaitos (Finland), Col legi Badalonés (Spain), Istituto di Istruzione Superiore “De Amicis” (Italy), Estudis d’Hoteleria i Turisme CETT (Spain), IPSAR “Luigi Carnacina” (Italy), Haaga-Helia University of Applied Sciences (Finland) and Breda University of Applied Sciences