'Corporate designmanagement' is een vlot geschreven en zeer overzichtelijk standaardwerk op het gebied van corporate designmanagement. Een sterke visuele identiteit is voor een organisatie een doeltreffend middel om zich te positioneren en te profileren. Voorwaarde is wel dat de visuele identiteit duidelijk wordt geregisseerd. Corporate designmanagement zorgt daarvoor. Dit boek daagt de lezer uit om een eigen visie op corporate design te ontwikkelen en om deze visie in de praktijk vorm te geven. Niet alleen krijgt de lezer een heldere uitleg van begrippen als identiteit, imago, huisstijl, brands, merkbouw en design audit. Ook wordt beschreven hoe deze begrippen succesvol kunnen worden toegepast. En hoe een huisstijl van een organisatie wordt ontwikkeld en gemanaged. In deze herziene druk is er meer aandacht voor het verschil tussen basiselementen zoals logo, kleur, typografie en beeld en toepassingsgebieden oftewel de dragers van de huisstijl. Denk hierbij aan brochures, websites en natuurlijk visitekaartjes. Ook zijn er meer cases en checklists toegevoegd. 'Corporate designmanagement' is niet alleen een zeer toegankelijk en compleet studieboek, maar bewijst ook in de praktijk goede diensten.
DOCUMENT
Corporate Social Responsibility affects Corporate Governance as it stretches the accountability of companies beyond its traditional boundaries. This however may conflict with the corporate objective of maximizing stockholder wealth. The paper provides an overview of various academic theories and corporate attitudes on this issue and discusses the merits and disadvantages of the two main governance modes: the stockholder mode and the stakeholder mode.
DOCUMENT
Corporate Visual Identity (CVI) is a crucial part of the identity of any organization. Most research on managing corporate identity deals with the strategic development of corporate identity and the design and effects of specific elements of the CVI. This study focuses on an aspect of CVI management that has not received much attention—the problem of maintaining consistent use of the CVI in an organization. A comparison is made between manufacturing and service organizations, and between profit-making and nonprofit organizations. For these organization types, the perceived CVI consistency was investigated, as well as the organizational and CVI management characteristics and instruments affecting it. The research was conducted using questionnaires distributed among employees of 20 Dutch organizations. Most of the differences found were those between profit-making and nonprofit organizations. The results showed greater consistency in the CVI of profit-making organizations, in accordance with the amount of effort these organizations put into CVI management.
DOCUMENT
Deploying robots from indoor to outdoor environments (vise versa) with stable and accurate localization is very important for companies to secure the utilization in industrial applications such as delivering harvested fruits from plantations, deploying/docking, navigating under solar panels, passing through tunnels/underpasses and parking in garages. This is because of the sudden changes in operational conditions such as receiving high/low-quality satellite signals, changing field of view, dealing with lighting conditions and addressing different velocities. We observed these limitations especially in indoor-outdoor transitions after conducting different projects with companies and obtaining inaccurate localization using individual Robotics Operating Systems (ROS2) modules. As there are rare commercial solutions for IO-transitions, AlFusIOn is a ROS2-based framework aims to fuse different sensing and data-interpretation techniques (LiDAR, Camera, IMU, GNSS-RTK, Wheel Odometry, Visual Odometry) to guarantee the redundancy and accuracy of the localization system. Moreover, maps will be integrated to robustify the performance and ensure safety by providing geometrical information about the transitioning structures. Furthermore, deep learning will be utilized to understand the operational conditions by labeling indoor and outdoor areas. This information will be encoded in maps to provide robots with expected operational conditions in advance and beyond the current sensing state. Accordingly, this self-awareness capability will be incorporated into the fusion process to control and switch between the localization techniques to achieve accurate and smooth IO-transitions, e.g., GNSS-RTK will be deactivated during the transition. As an urgent and unique demand to have an accurate and continuous IO-transition towards fully autonomous navigation/transportation, Saxion University and the proposal’s partners are determined to design a commercial and modular industrial-based localization system with robust performance, self-awareness about the localization capabilities and less human interference. Furthermore, AlFusIOn will intensively collaborate with MAPS (a RAAKPRO proposed by HAN University) to achieve accurate localization in outdoor environments.
In the last decade, the automotive industry has seen significant advancements in technology (Advanced Driver Assistance Systems (ADAS) and autonomous vehicles) that presents the opportunity to improve traffic safety, efficiency, and comfort. However, the lack of drivers’ knowledge (such as risks, benefits, capabilities, limitations, and components) and confusion (i.e., multiple systems that have similar but not identical functions with different names) concerning the vehicle technology still prevails and thus, limiting the safety potential. The usual sources (such as the owner’s manual, instructions from a sales representative, online forums, and post-purchase training) do not provide adequate and sustainable knowledge to drivers concerning ADAS. Additionally, existing driving training and examinations focus mainly on unassisted driving and are practically unchanged for 30 years. Therefore, where and how drivers should obtain the necessary skills and knowledge for safely and effectively using ADAS? The proposed KIEM project AMIGO aims to create a training framework for learner drivers by combining classroom, online/virtual, and on-the-road training modules for imparting adequate knowledge and skills (such as risk assessment, handling in safety-critical and take-over transitions, and self-evaluation). AMIGO will also develop an assessment procedure to evaluate the impact of ADAS training on drivers’ skills and knowledge by defining key performance indicators (KPIs) using in-vehicle data, eye-tracking data, and subjective measures. For practical reasons, AMIGO will focus on either lane-keeping assistance (LKA) or adaptive cruise control (ACC) for framework development and testing, depending on the system availability. The insights obtained from this project will serve as a foundation for a subsequent research project, which will expand the AMIGO framework to other ADAS systems (e.g., mandatory ADAS systems in new cars from 2020 onwards) and specific driver target groups, such as the elderly and novice.
The DPP4CD project, “Digital Product Passport(s) for Circular Denim: From Pilot to Practice,” focuses on delivering pilot and scalable Digital Product Passports (DPPs) in the circular denim industry. This aligns with the upcoming European Ecodesign for Sustainable Products Regulation (ESPR), making DPPs mandatory for textiles from 2027. A DPP for circular denim should clearly detail material composition, production methods, repair records, and recycling options to meet EU rules like ESPR, Corporate Sustainability Reporting Directive (CSRD) and European Sustainability Reporting Standards (ESRS). It combines dynamic lifecycle data into a standard, interoperable system that boosts traceability, cuts SME admin burdens, and supports sustainable, circular practices. Led by Saxion and HvA, the multidisciplinary project is based on a real-world Dutch use case with MUD Jeans, a leader in circular denim. The project combines circular economy principles with existing digital technologies, working with partners such as tex.tracer, Tejidos Royo, bAwear, Denim Deal, MODINT, EuFSI and, GS1 Netherlands. Instead of developing new tools, the project applies scalable technologies (augmented DPP extension) and methods e.g. blockchain, life cycle assessments, and traceability standards to denim supply chains. The project defines legal, environmental, technical, and user requirements for DPPs in circular denim and designs a modular, data-driven, and ESPR-compliant system that integrates offline and online components while ensuring interoperability, affordability, reliability, accountability, and scalability. It develops a data framework for material tracking, supported by interoperable digital solutions to improve data-sharing and transparency. A pilot DPP with MUD Jeans will cover the full lifecycle from production to recycling, enabling scalable DPP. The project aims to address societal challenges related to circularity, ensure scalable and implementable solutions, and create a digital platform where knowledge can be developed, shared, and utilised. By combining circular practices with digital technologies, DPP4CD will help textile businesses transition towards sustainable, transparent, and future-proof supply chains.