Challenges that surveys are facing are increasing data collection costs and declining budgets. During the past years, many surveys at Statistics Netherlands were redesigned to reduce costs and to increase or maintain response rates. From 2018 onwards, adaptive survey design has been applied in several social surveys to produce more accurate statistics within the same budget. In previous years, research has been done into the effect on quality and costs of reducing the use of interviewers in mixed-mode surveys starting with internet observation, followed by telephone or face-to-face observation of internet nonrespondents. Reducing follow-ups can be done in different ways. By using stratified selection of people eligible for follow-up, nonresponse bias may be reduced. The main decisions to be made are how to divide the population into strata and how to compute the allocation probabilities for face-to-face and telephone observation in the different strata. Currently, adaptive survey design is an option in redesigns of social surveys at Statistics Netherlands. In 2018 it has been implemented in the Health Survey and the Public Opinion Survey, in 2019 in the Life Style Monitor and the Leisure Omnibus, in 2021 in the Labour Force Survey, and in 2022 it is planned for the Social Coherence Survey. This paper elaborates on the development of the adaptive survey design for the Labour Force Survey. Attention is paid to the survey design, in particular the sampling design, the data collection constraints, the choice of the strata for the adaptive design, the calculation of follow-up fractions by mode of observation and stratum, the practical implementation of the adaptive design, and the six-month parallel design with corresponding response results.
Introduction Radical cystectomy (RC) is the standard treatment for patients with non-metastatic muscle-invasive bladder cancer, as well as for patients with therapy refractory high-risk non-muscle invasive bladder cancer. However, 50–65% of patients undergoing RC experience perioperative complications. The risk, severity and impact of these complications is associated with a patient’s preoperative cardiorespiratory fitness, nutritional and smoking status and presence of anxiety and depression. There is emerging evidence supporting multimodal prehabilitation as a strategy to reduce the risk of complications and improve functional recovery after major cancer surgery. However, for bladder cancer the evidence is still limited. The aim of this study is to investigate the superiority of a multimodal prehabilitation programme versus standard-of-care in terms of reducing perioperative complications in patients with bladder cancer undergoing RC.Methods and analysis This multicentre, open label, prospective, randomised controlled trial, will include 154 patients with bladder cancer undergoing RC. Patients are recruited from eight hospitals in The Netherlands and will be randomly (1:1) allocated to the intervention group receiving a structured multimodal prehabilitation programme of approximately 3–6 weeks, or to the control group receiving standard-of-care. The primary outcome is the proportion of patients who develop one or more grade ≥2 complications (according to the Clavien-Dindo classification) within 90 days of surgery. Secondary outcomes include cardiorespiratory fitness, length of hospital stay, health-related quality of life, tumour tissue biomarkers of hypoxia, immune cell infiltration and cost-effectiveness. Data collection will take place at baseline, before surgery and 4 and 12 weeks after surgery.Ethics and dissemination Ethical approval for this study was granted by the Medical Ethics Committee NedMec (Amsterdam, The Netherlands) under reference number 22–595/NL78792.031.22. Results of the study will be published in international peer-reviewed journals.Trial registration number NCT05480735.
Battery energy storage (BES) can provide many grid services, such as power flow management to reduce distribution grid overloading. It is desirable to minimise BES storage capacities to reduce investment costs. However, it is not always clear how battery sizing is affected by battery siting and power flow simultaneity (PFS). This paper describes a method to compare the battery capacity required to provide grid services for different battery siting configurations and variable PFSs. The method was implemented by modelling a standard test grid with artificial power flow patterns and different battery siting configurations. The storage capacity of each configuration was minimised to determine how these variables affect the minimum storage capacity required to maintain power flows below a given threshold. In this case, a battery located at the transformer required 10–20% more capacity than a battery located centrally on the grid, or several batteries distributed throughout the grid, depending on PFS. The differences in capacity requirements were largely attributed to the ability of a BES configuration to mitigate network losses. The method presented in this paper can be used to compare BES capacity requirements for different battery siting configurations, power flow patterns, grid services, and grid characteristics.